• Title/Summary/Keyword: mRNA supply

Search Result 24, Processing Time 0.031 seconds

Inhibition of Porcine Endogenous Retrovirus Expression by RNA Interference (RNA 간섭을 통한 Porcine Endogenous Retrovirus의 발현 억제)

  • Lee, Hyun-A;Koo, Bon-Chul;Kwon, Mo-Sun;Kim, Te-Oan
    • Reproductive and Developmental Biology
    • /
    • v.30 no.3
    • /
    • pp.181-187
    • /
    • 2006
  • In recent years the number of patients waiting for organ transplantation has greatly outpaced the supply of human organs available, which leads to a renewed interest in pig-to-human xenotransplantation as an alternative. However, one of the biggest barriers in the xenotransplantation is presence of porcine endogenous retroviruses(PERV) that can infect human cells. In this study, to present a possible solution for this problem we tried to inhibit expression of PERVs using shRNAs(short hairpin RNA) at the level of RNA synthesis and virus release. The shRNA targeting the sequence of PERV A, B type was cloned into pSIREN-RetroQ vector under the control of polymerase-III U6-RNA gene promoter. Quantitative real-time PCR was performed to detect my alterations in mRNA production of PERV A, B targeted by the shRNA in each done. Depending on the target sequence of the shRNA, the transcription of PERV was decreased to as much as 4% and the number of progeny viruses was reduced to less than 1/200,000. Transgenic pigs producing such shRNAs may result in a highly reduced PERV expression in cells and organs, which is a prerequisite for safe xenotransplantations.

Characterization of Culturable Bacteria in the Atmospheric Environment in Incheon, Korea (인천지역 대기 환경 중 배양성 세균의 특성)

  • Lee, Siwon;Park, Su Jeong;Kim, Ji Hye;Min, Byung-Dae;Chung, Hyen-Mi;Park, Sangjung
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.2
    • /
    • pp.126-132
    • /
    • 2016
  • Objectives: This study aims to provide basic data regarding the bacterial total plate count in the atmospheric environment for related studies. Methods: Total plate count and the identification of culturable bacteria in the atmospheric environment in Incheon took place in 2015 using periodic survey. Correlationship analysis was performed between the number of culturable bacteria and environmental elements. In addition, an estimation of novel bacterial species was undertaken using the similarities and phylogenetic tree based on the 16S rRNA gene. Results: The total plate count of culturable bacteria was on average $176CFU/m^3$, and did not exceed $610CFU/m^3$ in the atmospheric environment. Periodic monthly measuring of total plate count was highest in June at $293CFU/m^3$, while the lowest was in July at $125CFU/m^3$. Furthermore, as a result of the identification of culturable bacteria, the genera Arthrobacter and Kocuria were dominant, while novel bacterial taxa that belong to the genera Chryseobacterium and Herbiconiux were separated. Conclusion: The total number of culturable bacteria from the atmospheric environment in Korea is on average $176CFU/m^3$. In addition, the genera Arthrobacter and Kocuria dominate. The presence of novel bacterial taxa are expected in the atmospheric environment, such as belonging to the genera Chryseobacterium and Herbiconiux.

Nutritional and Tissue Specificity of IGF-I and IGFBP-2 Gene Expression in Growing Chickens - A Review -

  • Kita, K.;Nagao, K.;Okumura, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.5
    • /
    • pp.747-754
    • /
    • 2005
  • Nutritional regulation of gene expression associated with growth and feeding behavior in avian species can become an important technique to improve poultry production according to the supply of nutrients in the diet. Insulin-like growth factor-I (IGF-I) found in chickens has been characterized to be a 70 amino acid polypeptide and plays an important role in growth and metabolism. Although it is been well known that IGF-I is highly associated with embryonic development and post-hatching growth, changes in the distribution of IGF-I gene expression throughout early- to late-embryogenesis have not been studied so far. We revealed that the developmental pattern of IGF-I gene expression during embryogenesis differed among various tissues. No bands of IGF-I mRNA were detected in embryonic liver at 7 days of incubation, and thereafter the amount of hepatic IGF-I mRNA was increased from 14 to 20 days of incubation. In eyes, a peak in IGF-I mRNA levels occurred at mid-embryogenesis, but by contrast, IGF-I mRNA was barely detectable in the heart throughout all incubation periods. In the muscle, no significant difference in IGF-I gene expression was observed during different stages of embryogenesis. After hatching, hepatic IGF-I gene expression as well as plasma IGF-I concentration increases rapidly with age, reaches a peak before sexual maturity, and then declines. The IGF-I gene expression is very sensitive to changes in nutritional conditions. Food-restriction and fasting decreased hepatic IGF-I gene expression and refeeding restored IGF-I gene expression to the level of fed chickens. Dietary protein is also a very strong factor in changing hepatic IGF-I gene expression. Refeeding with dietary protein alone successfully restored hepatic IGF-I gene expression of fasted chickens to the level of fed controls. In most circumstances, IGF-I makes a complex with specific high-affinity IGF-binding proteins (IGFBPs). So far, four different IGFBPs have been identified in avian species and the major IGFBP in chicken plasma has been reported to be IGFBP-2. We studied the relationship between nutritional status and IGFBP-2 gene expression in various tissues of young chickens. In the liver of fed chickens, almost no IGFBP-2 mRNA was detected. However, fasting markedly increased hepatic IGFBP-2 gene expression, and the level was reduced after refeeding. In the gizzard of well-fed young chickens, IGFBP-2 gene expression was detected and fasting significantly elevated gizzard IGFBP-2 mRNA levels to about double that of fed controls. After refeeding, gizzard IGFBP-2 gene expression decreased similar to hepatic IGFBP-2 gene expression. In the brain, IGFBP-2 mRNA was observed in fed chickens and had significantly decreased by fasting. In the kidney, IGFBP-2 gene expression was observed but not influenced by fasting and refeeding. Recently, we have demonstrated in vivo that gizzard and hepatic IGFBP-2 gene expression in fasted chickens was rapidly reduced by intravenous administration of insulin, as indicated that in young chickens the reduction in gizzard and hepatic IGFBP-2 gene expression in vivo stimulated by malnutrition may be, in part, regulated by means of the increase in plasma insulin concentration via an insulin-response element. The influence of dietary protein source (isolated soybean protein vs. casein) and the supplementation of essential amino acids on gizzard IGFBP-2 gene expression was examined. In both soybean protein and casein diet groups, the deficiency of essential amino acids stimulated chickens to increase gizzard IGFBP-2 gene expression. Although amino acid supplementation of a soybean protein diet significantly decreased gizzard IGFBP-2 mRNA levels, a similar reduction was not observed in chickens fed a casein diet supplemented with amino acids. This overview of nutritional regulation of IGF-I and IGFBP-2 gene expression in young chickens would serve for the establishment of the supply of nutrients to diets to improve poultry production.

Isolation of Cyanobacteria Producing Microcystin from Lakes (담수 생태계에서 Microcystin을 생산하는 남조세균의 분리)

  • Lee, Hee-Seon;Oh, Kyoung-Hee;Cho, Young-Cheol
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.251-257
    • /
    • 2008
  • Four potential microcystin-producing cyanobacteria were isolated from large reservoirs which act as sources of drinking water supply in Korea. Strain DC-2, YD-l, and YD-6 were closely related to Microcystis aeruginosa based on the analysis of l6S rRNA gene and mcyA gene sequences. mcyA gene sequence of YDS2-3, isolated from Yongdam Reservoir, was closed to that of M. aeruginosa, whereas l6S rRNA gene sequence was not related to the known sequences of microcystin-producing cyanobacteria indicating this strain can be a novel cyanobacterium belonging to the genus Microcystis. When mcyA gene sequences of isolated cyanobacteria were compared with the mcyA gene sequence library of two reservoirs, the sequence of DC-2 matched with the dominant ones.

Ataxin-2 Dysregulation Triggers a Compensatory Fragile X Mental Retardation Protein Decrease in Drosophila C4da Neurons

  • Cha, In Jun;Lee, Davin;Park, Sung Soon;Chung, Chang Geon;Kim, Seung Yeon;Jo, Min Gu;Kim, Seung Yeol;Lee, Byung-Hoon;Lee, Young-Sam;Lee, Sung Bae
    • Molecules and Cells
    • /
    • v.43 no.10
    • /
    • pp.870-879
    • /
    • 2020
  • Dendrites require precise and timely delivery of protein substrates to distal areas to ensure the correct morphology and function of neurons. Many of these protein substrates are supplied in the form of ribonucleoprotein (RNP) complex consisting of RNA-binding proteins (RBPs) and mRNAs, which are subsequently translated in distal dendritic areas. It remains elusive, however, whether key RBPs supply mRNA according to local demands individually or in a coordinated manner. In this study, we investigated how Drosophila sensory neurons respond to the dysregulation of a disease-associated RBP, Ataxin-2 (ATX2), which leads to dendritic defects. We found that ATX2 plays a crucial role in spacing dendritic branches for the optimal dendritic receptive fields in Drosophila class IV dendritic arborization (C4da) neurons, where both expression level and subcellular location of ATX2 contribute significantly to this effect. We showed that translational upregulation through the expression of eukaryotic translation initiation factor 4E (eIF4E) further enhanced the ATX2-induced dendritic phenotypes. Additionally, we found that the expression level of another disease-associated RBP, fragile X mental retardation protein (FMRP), decreased in both cell bodies and dendrites when neurons were faced with aberrant upregulation of ATX2. Finally, we revealed that the PAM2 motif of ATX2, which mediates its interaction with poly(A)-binding protein (PABP), is potentially necessary for the decrease of FMRP in certain neuronal stress conditions. Collectively, our data suggest that dysregulation of RBPs triggers a compensatory regulation of other functionally-overlapping RBPs to minimize RBP dysregulation-associated aberrations that hinder neuronal homeostasis in dendrites.

Effects of Fasting on Brain Expression of Kiss2 and GnRH I and Plasma Levels of Sex Steroid Hormones, in Nile Tilapia Oreochromis niloticus (절식이 나일 틸라피아 Oreochromis niloticus의 Kiss2, GnRH I mRNA 발현 및 성 스테로이드 호르몬 농도에 미치는 영향)

  • Park, Jin Woo;Kwon, Joon Yeong;Jin, Ye Hwa;Oh, Sung-Yong
    • Ocean and Polar Research
    • /
    • v.38 no.1
    • /
    • pp.81-88
    • /
    • 2016
  • In many fish species, including Nile tilapia (Oreochromis niloticus), gonadal development occurs at the expense of stored energy and nutrients. Therefore, reproductive systems are inhibited by limited food supply. It has been well established that reproductive function is highly sensitive to both metabolic status and energy balance. Nothing is known about the possible mediated connection between energy balance and reproduction. Kisspeptin, a neuropeptide product of the Kiss gene has emerged as an essential gatekeeper of reproduction and may be possibly be linked to energy balance and reproduction in non-mammalians. Thus, in this study, the effect of fasting (10 days) on the expression of kisspeptin and the gonadotropin-releasing hormone (GnRH) gene were assessed in Nile tilapia (male and female) using qRT-PCR. In addition, plasma levels of estradiol-$17{\beta}$ ($E_2$) and 11-ketotestosterone (11-KT) in adult tilapia were measured by ELISA. In male tilapia, fasting reduced Kiss2 and GnRH I mRNA expression in the brain and 11-KT level in comparison with the fed tilapia (p < 0.05). In females, however, there were no significant differences in GnRH I mRNA expression and $E_2$ between fish subjected to fasting and those fed (p > 0.05). These data indicate the impact of nutritional states on kisspeptin as a potential regulatory mechanism for the control of reproduction in male Nile tilapia.

CaMKII Inhibitor KN-62 Blunts Tumor Response to Hypoxia by Inhibiting HIF-$1{\alpha}$ in Hepatoma Cells

  • Lee, Kyoung-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.5
    • /
    • pp.331-336
    • /
    • 2010
  • In rapidly growing tumors, hypoxia commonly develops due to the imbalance between $O_2$ consumption and supply. Hypoxia Inducible Factor (HIF)-$1{\alpha}$ is a transcription factor responsible for tumor growth and angiogenesis in the hypoxic microenvironment; thus, its inhibition is regarded as a promising strategy for cancer therapy. Given that CamKII or PARP inhibitors are emerging anticancer agents, we investigated if they have the potential to be developed as new HIF-$1{\alpha}$-targeting drugs. When treating various cancer cells with the inhibitors, we found that a CamKII inhibitor, KN-62, effectively suppressed HIF-$1{\alpha}$ specifically in hepatoma cells. To examine the effect of KN-62 on HIF-$1{\alpha}$-driven gene expression, we analyzed the EPO-enhancer reporter activity and mRNA levels of HIF-$1{\alpha}$ downstream genes, such as EPO, LOX and CA9. Both the reporter activity and the mRNA expression were repressed by KN-62. We also found that KN-62 suppressed HIF-$1{\alpha}$ by impairing synthesis of HIF-$1{\alpha}$ protein. Based on these results, we propose that KN-62 is a candidate as a HIF-$1{\alpha}$-targeting anticancer agent.

Enhanced supply of methionine regulates protein synthesis in bovine mammary epithelial cells under hyperthermia condition

  • Zhou, Jia;Yue, Shuangming;Xue, Benchu;Wang, Zhisheng;Wang, Lizhi;Peng, Quanhui;Xue, Bai
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.1126-1141
    • /
    • 2021
  • Recent evidence has shown that methionine (Met) supplementation can improve milk protein synthesis under hyperthermia (which reduces milk production). To explore the mechanism by which milk protein synthesis is affected by Met supplementation under hyperthermia, mammary alveolar (MAC-T) cells were incubated at a hyperthermic temperature of 42℃ for 6 h in media with different concentrations of Met. While the control group (CON) contained a normal amino acid concentration profile (60 ㎍/mL of Met), the three treatment groups were supplemented with Met at concentrations of 10 ㎍/mL (MET70, 70 ㎍/mL of Met), 20 ㎍/mL (MET80, 80 ㎍/mL of Met), and 30 ㎍/mL (MET90,90 ㎍/mL of Met). Our results show that additional Met supplementation increases the mRNA and protein levels of BCL2 (B-cell lymphoma-2, an anti-apoptosis agent), and decreases the mRNA and protein levels of BAX (Bcl-2-associated X protein, a pro-apoptosis agent), especially at an additional supplementary concentration of 20 ㎍/mL (group Met80). Supplementation with higher concentrations of Met decreased the mRNA levels of Caspase-3 and Caspase-9, and increased protein levels of heat shock protein (HSP70). The total protein levels of the mechanistic target of rapamycin (mTOR) and the mTOR signalling pathway-related proteins, AKT, ribosomal protein S6 kinase B1 (RPS6KB1), and ribosomal protein S6 (RPS6), increased with increasing Met supplementation, and peaked at 80 ㎍/mL Met (group Met80). In addition, we also found that additional Met supplementation upregulated the gene expression of αS1-casein (CSN1S1), β-casein (CSN2), and the amino acid transporter genes SLC38A2, SLC38A3 which are known to be mTOR targets. Additional Met supplementation, however, had no effect on the gene expression of κ-casein (CSN3) and solute carrier family 34 member 2 (SLC34A2). Our results suggest that additional Met supplementation with 20 ㎍/mL may promote the synthesis of milk proteins in bovine mammary epithelial cells under hyperthermia by inhibiting apoptosis, activating the AKT-mTOR-RPS6KB1 signalling pathway, and regulating the entry of amino acids into these cells.

Digestive Enzymatic and Nucleic Acidic Responses of Olive Flounder Paralichthys oilivaceus Larvae Fed Cyclopoid Copepod Paracyclopina nana (기수산 Cyclopoid 요각류 Paracyclopina nana를 섭취한 넙치 Paralichthys olivaceus 자어의 핵산 함량과 소화효소적 반응)

  • Kwon, O-Nam;Lee, Kyun-Woo;Kim, Gun-Up;Park, Heum-Gi
    • Journal of Aquaculture
    • /
    • v.21 no.3
    • /
    • pp.190-195
    • /
    • 2008
  • We investigated the changes in growth, digestive enzymes activities, nucleic acids contents and RNA/DNA ratio of flounder Paralichthys olivaceus larvae (C for Paracyclopina nana, A for Artemia, and M for Mix of C and A) for 14 to 28 DAH. Body length of flounder larvae showed the best in the C trial at 28 DAH. The change of nucleic acids contents showed faster in C and M trials than A trial. And RNA/DNA ratio showed the significantly faster changes in C trial than A trial. High metamorphosis rates were also observed in C and M trial. $\alpha$-amylase activities increased gradually up to 28 DAH in all trials. Total alkaline protease (TAP) activities of A trial showed the highest value to 9 mU/larvae at 26 DAH. But others trials showed lower to $5{\sim}6$ mU/larva than A trial. TAP:$\alpha$-amylase activity ratio did not significantly changed to $0.025{\sim}0.053$ in A trial during the experiments. But, C and M trials tended to gradually decrease from $0.078{\sim}0.083$ (initial) to $0.013{\sim}0.018$ (final). Therefore, it shown the ratio gradually decreased of TAP:$\alpha$-amylase activity, stability of TAP activity, and rapid change of nucleic acids in trials grown positively. Thus, because P. nana could continuously supply the optimal nutrients for flounder larvae, we suggested the supplement of the copepod to an efficient feed of the flounder larvae.

Expression Analysis of Cathepsin F during Embryogenesis and Early Developmental Stage in Olive Flounder (Paralichthys olivaceus)

  • Lee, Jang-Wook;Lee, Young Mee;Yang, Hyun;Noh, Jae Koo;Kim, Hyun Chul;Park, Choul-Ji;Park, Jong-Won;Hwang, In Joon;Kim, Sung Yeon;Lee, Jeong-Ho
    • Development and Reproduction
    • /
    • v.17 no.3
    • /
    • pp.221-229
    • /
    • 2013
  • Cathepsins are members of the multigene family of lysosomal cysteine proteinases and have regulated function in several life processes. The potential role of cathepsin F cysteine gene was expected as protease in the yolk processing mechanism during early developmental stage, but expression analysis was unknown after fertilization. The alignment analysis showed that amino acid sequence of cathepsin F from olive flounder liver expressed sequence tag (EST) homologous to cathepsin F of other known cathepsin F sequences with 87-98% identity. In this study, we examined the gene expression analysis of cathepsin F in various tissues at variety age flounder. Tissue distribution of the cathepsin F mRNA has been shown to be ubiquitous and constitutive pattern regardless of age in each group, although derived from cDNA library using liver sample. The mRNA level of cathepsin F more increased as developmental proceed during embryogenesis and early developmental stage, especially increased in the blastula, hatching stage and 3 days post hatching (dph). As a result, it may suggest that the proteolysis of yolk proteins (YPs) has been implicated as a mechanism for nutrient supply during early larval stages in olive flounder.