• Title/Summary/Keyword: mRNA microarray

Search Result 170, Processing Time 0.029 seconds

GENE EXPRESSION ANALYSIS OF THE DENTAL PULP IN HEALTHY AND CARIES TEETH (치아 우식증에 따른 치수내 유전자 발현 변화에 관한 분석)

  • Oh, So-Hee;Kim, Jong-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.37 no.3
    • /
    • pp.275-287
    • /
    • 2010
  • Deep caries may induce pulpitis and the pulpal tissue interacts with microbial invasion. The immune response to protect the pulpal tissue can be mediated by cellular signal molecules produced by the pulpal cells. The understanding of these processes is important to find future therapeutic method for the diseased pulp. The pulp tissue from sound teeth was set as control group (n=30) and the pulp tissue from decayed teeth was set as test group (n=30). Total RNA was extracted from the pulp of each group and it was used for cDNA microarray and reverse transcriptase-polymerase chain reaction(RT-PCR). The expression of TGF-${\beta}1$ was studied by immunohistochemistry. The results were as follows: 1. cDNA microarray analysis identified 520 genes with 6-fold or greater difference in expression level with 143 genes more abundant in health and 377 genes more abundant in disease. 2. The RT-PCR analysis was done for randomly selected 14 genes and the results supported the result of cDNA microarray assay. 3. TGF-${\beta}1$ was highly expressed in the carious pulp and it was found in odontoblast by immunohistochemistry. In conclusion, many cytokines were found to be significantly changed their expression in the diseased pulp(/M/>1.6).

Gene Discovery Analysis from Mouse Embryonic Stem Cells Based on Time Course Microarray Data

  • Suh, Young Ju;Cho, Sun A;Shim, Jung Hee;Yook, Yeon Joo;Yoo, Kyung Hyun;Kim, Jung Hee;Park, Eun Young;Noh, Ji Yeun;Lee, Seong Ho;Yang, Moon Hee;Jeong, Hyo Seok;Park, Jong Hoon
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.338-343
    • /
    • 2008
  • An embryonic stem cell is a powerful tool for investigation of early development in vitro. The study of embryonic stem cell mediated neuronal differentiation allows for improved understanding of the mechanisms involved in embryonic neuronal development. We investigated expression profile changes using time course cDNA microarray to identify clues for the signaling network of neuronal differentiation. For the short time course microarray data, pattern analysis based on the quadratic regression method is an effective approach for identification and classification of a variety of expressed genes that have biological relevance. We studied the expression patterns, at each of 5 stages, after neuronal induction at the mRNA level of embryonic stem cells using the quadratic regression method for pattern analysis. As a result, a total of 316 genes (3.1%) including 166 (1.7%) informative genes in 8 possible expression patterns were identified by pattern analysis. Among the selected genes associated with neurological system, all three genes showing linearly increasing pattern over time, and one gene showing decreasing pattern over time, were verified by RT-PCR. Therefore, an increase in gene expression over time, in a linear pattern, may be associated with embryonic development. The genes: Tcfap2c, Ttr, Wnt3a, Btg2 and Foxk1 detected by pattern analysis, and verified by RT-PCR simultaneously, may be candidate markers associated with the development of the nervous system. Our study shows that pattern analysis, using the quadratic regression method, is very useful for investigation of time course cDNA microarray data. The pattern analysis used in this study has biological significance for the study of embryonic stem cells.

The application of chitosan to dental medicine

  • Hayashi, Y.;Yamada, S.;Ohara, N.;Kim, S-K.;Ikeda, T.;Yanagiguchi, K.;Matsunaga, T.
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.545-545
    • /
    • 2003
  • Chitosan is applied as a dressing for oral mucous wound and a tampon following radical treatment of maxillary sinus. Furthermore, it is being investigated as an absorbing membrane for endodontic and periodontic surgeries. A few studies have reported osteoconduction and osteogenesia at the site of chitosan implant in vivo. However, compared with soft tissue healing processes, the mechanisms concerning effects of chitosan for biological mineralization have not yet been resoil In the present study, we studied the gene expression pattern using cDNA microarray and RT-PCR analyses in hard tissue forming osteoblasts cultured with water-soluble and low molecular weight chitooligosaccharide. cDNA microarray analysis revealed that 16 genes were expressed at 〉1.5-fold higher signal ratio levels in the experimental group compared with the control group after 3 days. RT-PCR analysis showed that chitosan oligomer induced an increase in the expression of two genes, CD56 antigen and tissue-type plasminogen activator. Furthermore, the expression of mRNAs for BMP-2 was almost identical in the experimental and control groups after 3 days of culture, but slightly increased after 7 days of culture with chitosan oligomer. These results suggest that a super-low concentration of chitooligosaccharide could modulate the activity of osteoblastic cells through mRNA levels and that the genes concerning cell proliferation and differentiation can be controlled by water-soluble chitosan.

  • PDF

Coordinated alteration of mRNA-microRNA transcriptomes associated with exosomes and fatty acid metabolism in adipose tissue and skeletal muscle in grazing cattle

  • Muroya, Susumu;Ogasawara, Hideki;Nohara, Kana;Oe, Mika;Ojima, Koichi;Hojito, Masayuki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1824-1836
    • /
    • 2020
  • Objective: On the hypothesis that grazing of cattle prompts organs to secrete or internalize circulating microRNAs (c-miRNAs) in parallel with changes in energy metabolism, we aimed to clarify biological events in adipose, skeletal muscle, and liver tissues in grazing Japanese Shorthorn (JSH) steers by a transcriptomic approach. Methods: The subcutaneous fat (SCF), biceps femoris muscle (BFM), and liver in JSH steers after three months of grazing or housing were analyzed using microarray and quantitative polymerase chain reaction (qPCR), followed by gene ontology (GO) and functional annotation analyses. Results: The results of transcriptomics indicated that SCF was highly responsive to grazing compared to BFM and liver tissues. The 'Exosome', 'Carbohydrate metabolism' and 'Lipid metabolism' were extracted as the relevant GO terms in SCF and BFM, and/or liver from the >1.5-fold-altered mRNAs in grazing steers. The qPCR analyses showed a trend of upregulated gene expression related to exosome secretion and internalization (charged multivesicular body protein 4A, vacuolar protein sorting-associated protein 4B, vesicle associated membrane protein 7, caveolin 1) in the BFM and SCF, as well as upregulation of lipolysis-associated mRNAs (carnitine palmitoyltransferase 1A, hormone-sensitive lipase, perilipin 1, adipose triglyceride lipase, fatty acid binding protein 4) and most of the microRNAs (miRNAs) in SCF. Moreover, gene expression related to fatty acid uptake and inter-organ signaling (solute carrier family 27 member 4 and angiopoietin-like 4) was upregulated in BFM, suggesting activation of SCF-BFM organ crosstalk for energy metabolism. Meanwhile, expression of plasma exosomal miR-16a, miR-19b, miR-21-5p, and miR-142-5p was reduced. According to bioinformatic analyses, the c-miRNA target genes are associated with the terms 'Endosome', 'Caveola', 'Endocytosis', 'Carbohydrate metabolism', and with pathways related to environmental information processing and the endocrine system. Conclusion: Exosome and fatty acid metabolism-related gene expression was altered in SCF of grazing cattle, which could be regulated by miRNA such as miR-142-5p. These changes occurred coordinately in both the SCF and BFM, suggesting involvement of exosome in the SCF-BFM organ crosstalk to modulate energy metabolism.

Characterization and Profiling of Liver microRNAs by RNA-sequencing in Cattle Divergently Selected for Residual Feed Intake

  • Al-Husseini, Wijdan;Chen, Yizhou;Gondro, Cedric;Herd, Robert M.;Gibson, John P.;Arthur, Paul F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1371-1382
    • /
    • 2016
  • MicroRNAs (miRNAs) are short non-coding RNAs that post-transcriptionally regulate expression of mRNAs in many biological pathways. Liver plays an important role in the feed efficiency of animals and high and low efficient cattle demonstrated different gene expression profiles by microarray. Here we report comprehensive miRNAs profiles by next-gen deep sequencing in Angus cattle divergently selected for residual feed intake (RFI) and identify miRNAs related to feed efficiency in beef cattle. Two microRNA libraries were constructed from pooled RNA extracted from livers of low and high RFI cattle, and sequenced by Illumina genome analyser. In total, 23,628,103 high quality short sequence reads were obtained and more than half of these reads were matched to the bovine genome (UMD 3.1). We identified 305 known bovine miRNAs. Bta-miR-143, bta-miR-30, bta-miR-122, bta-miR-378, and bta-let-7 were the top five most abundant miRNAs families expressed in liver, representing more than 63% of expressed miRNAs. We also identified 52 homologous miRNAs and 10 novel putative bovine-specific miRNAs, based on precursor sequence and the secondary structure and utilizing the miRBase (v. 21). We compared the miRNAs profile between high and low RFI animals and ranked the most differentially expressed bovine known miRNAs. Bovine miR-143 was the most abundant miRNA in the bovine liver and comprised 20% of total expressed mapped miRNAs. The most highly expressed miRNA in liver of mice and humans, miR-122, was the third most abundant in our cattle liver samples. We also identified 10 putative novel bovine-specific miRNA candidates. Differentially expressed miRNAs between high and low RFI cattle were identified with 18 miRNAs being up-regulated and 7 other miRNAs down-regulated in low RFI cattle. Our study has identified comprehensive miRNAs expressed in bovine liver. Some of the expressed miRNAs are novel in cattle. The differentially expressed miRNAs between high and low RFI give some insights into liver miRNAs regulating physiological pathways underlying variation in this measure of feed efficiency in bovines.

Microarray Analysis of Long Non-coding RNA Expression Profile Associated with 5-Fluorouracil-Based Chemoradiation Resistance in Colorectal Cancer Cells

  • Xiong, Wei;Jiang, Yong-Xin;Ai, Yi-Qin;Liu, Shan;Wu, Xing-Rao;Cui, Jian-Guo;Qin, Ji-Yong;Liu, Yan;Xia, Yao-Xiong;Ju, Yun-He;He, Wen-Jie;Wang, Yong;Li, Yun-Fen;Hou, Yu;Wang, Li;Li, Wen-Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3395-3402
    • /
    • 2015
  • Background: Preoperative 5-fluorouracil (5-FU)-based chemoradiotherapy is a standard treatment for locally advanced colorectal cancer (CRC). However, CRC cells often develop chemoradiation resistance (CRR). Recent studies have shown that long non-coding RNA (lncRNA) plays critical roles in a myriad of biological processes and human diseases, as well as chemotherapy resistance. Since the roles of lncRNAs in 5-FU-based CRR in human CRC cells remain unknown, they were investigated in this study. Materials and Methods: A 5-FU-based concurrent CRR cell model was established using human CRC cell line HCT116. Microarray expression profiling of lncRNAs and mRNAs was undertaken in parental HCT116 and 5-FU-based CRR cell lines. Results: In total, 2,662 differentially expressed lncRNAs and 2,398 mRNAs were identified in 5-FU-based CRR HCT116 cells when compared with those in parental HCT116. Moreover, 6 lncRNAs and 6 mRNAs found to be differentially expressed were validated by quantitative real time PCR (qRT-PCR). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for the differentially expressed mRNAs indicated involvement of many, such as Jak-STAT, PI3K-Akt and NF-kappa B signaling pathways. To better understand the molecular basis of 5-FU-based CRR in CRC cells, correlated expression networks were constructed based on 8 intergenic lncRNAs and their nearby coding genes. Conclusions: Changes in lncRNA expression are involved in 5-FU-based CRR in CRC cells. These findings may provide novel insight for the prognosis and prediction of response to therapy in CRC patients.

Matrine Reduces Proliferation of Human Lung Cancer Cells by Inducing Apoptosis and Changing miRNA Expression Profiles

  • Liu, Yong-Qi;Li, Yi;Qin, Jie;Wang, Qian;She, Ya-Li;Luo, Ya-Li;He, Jian-Xin;Li, Jing-Ya;Xie, Xiao-Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2169-2177
    • /
    • 2014
  • Matrine, a main active component extracted from dry roots of Sophora flavecens, has been reported to exert antitumor effects on A549 human non-small lung cancer cells, but its mechanisms of action remain unclear. To determine effects of matrine on proliferation of A549 cells and assess possible mechanisms, MTT assays were employed to detect cytotoxicity, along with o flow cytometric analysis of DNA content of nuclei of cells following staining with propidium iodide to analyze cell cycle distribution. Western blotting was performed to determined expression levels of Bax, Bcl-2, VEGF and HDAC1, while a microarray was used to assessed changes of miRNA profiles. In the MTT assay, matrine suppressed growth of human lung cancer cell A549 in a dose- and timedependent manner at doses of 0.25-2.5 mg/ml for 24h, 48h or 72h. Matrine induced cell cycle arrest in G0/G1 phase and decreased the G2/M phase, while down-regulating the expression of Bcl2 protein, leading to a reduction in the Bcl-2/Bax ratio. In addition, matrine down regulated the expression level of VEGF and HDAC1 of A549 cells. Microarray analysis demonstrated that matrine altered the expression level of miRNAs compared with untreated control A549 cells. In conclusion, matrine could inhibit proliferation of A549 cells, providing useful information for understanding anticancer mechanisms.

Viral Hemorrhagic Septicemia Virus NV Gene Decreases Glycolytic Enzyme Gene Transcription (바이러스성 출혈성 패혈증 바이러스 NV 단백질에 의한 glucokinase 전사 활성의 억제)

  • Cho, Mi Young;Hwang, Jee Youn;Ji, Bo Young;Park, Myoung Ae;Seong, Mi So;Kim, So Young;Jung, Ye Eun;Cheong, Jae Hun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1470-1476
    • /
    • 2016
  • The viral hemorrhagic septicemia virus (VHSV), which belongs to the Novirhabdovirus genus of the Rhabdoviridae family, is a viral pathogen that causes severe losses in the olive flounder farming industry. Among six encoding VHSV proteins, the non-virion (NV) protein has been shown to have an impact on virulence. In our previous studies, transcriptomics microarray analysis by using VHSV-infected olive flounder showed that VHSV infection significantly down-regulated the mRNA expression of glycolytic enzymes. In addition, VHSV NV protein variants decreased the intracellular ATP level. Based on these results, we have tried to examine the effect of VHSV NV protein on glycolytic enzyme glucokinase expression, which phosphorylates glucose to glucose 6-phosphate. Our results indicated that the NV protein significantly decreased the mRNA expression of glucokinase in olive flounder HINAE cells. Furthermore, the NV protein played a negative role in the promoter activation of glucokinase. Furthermore, glucose uptake was effectively inhibited by VHSV infection and NV protein expression in olive flounder HINAE cells. These results suggest that the VHSV NV protein negatively regulates glycolytic enzyme expression by a transcription level and eventually leads to gradual morbidity of olive flounder through cellular energy deprivation. The present results may be useful for the prevention and diagnosis of VHSV infection in olive flounder.

Effects of Scutellaria baicalensis GEORGI on Gene Expression in a Hypoxic Model of Cultured Rat Cortical Cells (배양한 흰쥐 대뇌세포의 저산소증 모델에서 황금(黃芩)이 유전자 표현에 미치는 영향)

  • Chung, Sung-Hyun;Shin, Gil-Cho;Lee, Won-Chul;Kim, Sung-Bae
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.4
    • /
    • pp.324-336
    • /
    • 2004
  • Objectives : The purpose of this investigation is to evaluate the effects of Scutellaria baicalensis GEORGI on alteration in gene expression in a hypoxia model using cultured rat cortical cells. Methods : E18 rat cortical cells were grown in a Neurobasal medium containing B27 supplement. On 12 DIV, Scutellaria baicalensis GEORGI(20 ug/ml) was added to the culture media and left for 24 hrs. On 11 DIV, cells were given a hypoxic insult $(2%\;O_2/5%\;CO_2,\;37^{\circ}C,\;3\;hrs)$, returned to normoxia and cultured for another 24 hrs. Total RNA was prepared from Scutellaria baicalensis GEORGI-untreated (control) and -treated cultures and alteration in gene expression was analysed by microarray using rat 5K-TwinChips. Results : For most of the genes altered in expression, the Global M values were between -0.5 to +0.5. Among these, 1143 genes increased in their expression by more than Global M +0.1, while 1161 genes decreased by more than Global M -0.1. Effects on some of the genes whose functions are implicated in neural viability are as follows: 1) The expression of apoptosis-related genes such as Bad (Global M = 0.39), programmed cell death-2(Pdcd2) (Global M = 0.20) increased, while Purinergic receptor P2X(P2rxl) Global M = -0.22), Bc12-like1(Bc1211)(Global M = -0.19) decreased. 2) The expression of 'response to stress-related genes such as antioxidation-related AMP-activated protein kinase subunit gamma 1 gene (Prkag1) (Global M = 0.14), catalase gene (Global M = 0.14) and Heme Oxygenase(Hmoxl) increased. 3) The expression of Fos like antigen 2 (Fos12) expressed in neurons that survive ischemic insult increased (Global M = 0.97). Conclusions : these data suggest that Scutellaria baicalensis GEORGI increases the expression of antiapoptosis- and antioxidation- related genes in a way that can not yet be explained.

  • PDF

MiRNA-15a Mediates Cell Cycle Arrest and Potentiates Apoptosis in Breast Cancer Cells by Targeting Synuclein-γ

  • Li, Ping;Xie, Xiao-Bing;Chen, Qian;Pang, Guo-Lian;Luo, Wan;Tu, Jian-Cheng;Zheng, Fang;Liu, Song-Mei;Han, Lu;Zhang, Jian-Kun;Luo, Xian-Yong;Zhou, Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6949-6954
    • /
    • 2014
  • Background: Recent studies have indicated that microRNA-15a (miR-15a) is dysregulated in breast cancer (BC). We aimed to evaluate the expression of miR-15a in BC tissues and corresponding para-carcinoma tissues. We also focused on effects of miR-15a on cellular behavior of MDA-MB-231 and expression of its target gene synuclein-${\gamma}$ (SNCG). Materials and Methods: The expression levels of miR-15a were analysed in BC formalin fixed paraffin embedded (FFPE) tissues by microarray and quantitative real-time PCR. CCK-8 assays, cell cycle and apoptosis assays were used to explore the potential functions of miR-15a in MDA-MB-231 human BC cells. A luciferase reporter assay confirmed direct targets. Results: Downregulation of miR-15a was detected in most primary BCs. Ectopic expression of miR-15a promoted proliferation and suppressed apoptosis in vivo. Further studies indicated that miR-15a may directly interact with the 3'-untranslated region (3'-UTR) of SNCG mRNA, downregulating its mRNA and protein expression levels. SNCG expression was negatively correlated with miR-15a expression. Conclusions: MiR-15a has a critical role in mediating cell cycle arrest and promoting cell apoptosis of BC, probably by directly targeting SNCG. Thus, it may be involved in development and progression of BC.