• Title/Summary/Keyword: mMLC

Search Result 53, Processing Time 0.02 seconds

Control of Kimchi Fermentation by the Addition of Natural Antimicrobial Agents Originated from Plants (식물유래 천연항균물질 첨가에 의한 김치의 발효조절)

  • Seo, Hyun-Sun;Kim, Seonhwa;Kim, Jinsol;Han, Jaejoon;Ryu, Jee-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.583-589
    • /
    • 2013
  • We investigated the delay of kimchi fermentation by the addition of plant extracts. Fifteen plant extracts were screened for inhibitory activity aginst Lactobacillus plantarum by using an agar well diffusion assay, and determined the minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) were determined. The lowest MIC for grapefruit seed extract (GFSE; 0.0313 mg/mL) was determined, followed by Caesalpinia sappan L. extract (CSLE; 0.25 mg/mL), and oregano essential oil (OREO; 1.0 mg/mL). GFSE, CSLE, and OREO were individually added to kimchi, and incubated the samples at 10 for up to 20 days. Results showed that the addition of GFSE (0.3 and 0.5%), CSLE (0.1, 0.3, and 0.5%), or OREO (0.5 and 1.0%) led to a significant increase in the pH of kimchi, and also a significant reduction in the numbers of lactic acid bacteria. Taken together, the addition of natural antimicrobial agents can delay kimchi fermentation.

Identification of Cuts-specific Myogenic Marker Genes in Hanwoo by DNA Microarray (DNA Microarray 분석을 통한 한우 부위별 특이 마커 유전자의 발굴)

  • Lee, Eun-Ju;Shin, Yu-Mi;Lee, Hyun-Jeong;Yoon, Du-Hak;Chun, Tae-Hoon;Lee, Yong-Seok;Choi, In-Ho
    • Journal of Animal Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.329-336
    • /
    • 2010
  • Myogenic satellite cells (MSCs) are mononuclear, multipotent progenitors of adult skeletal muscle possessing a capacity of forming adipocyte-like cells (ALC). To identify the skeletal muscle type-specific myogenic and adipogenic genes during MSCs differentiation, total RNA was extracted from bovine MSCs, myotube-formed cell (MFC), and ALC from each of Beef shank, Longissimus dorsi, Deep pectoral, and Semitendinosus. DNA microarray analysis (24,000 oligo chip) comparing MSCs with MFC and ALC, respectively, revealed 135 differentially expressed genes (> 4 fold) among four cuts. Real-time PCR confirmed expression of 29 genes. Furthermore, the whole tissue sample RNAs analysis showed 6 differentially expressed genes in Beef shank. Among which, 1 gene in MSCs, 4 in MFC, and 1 in ALCs were highly expressed. This study will provide an insight for better understanding the molecular mechanism of differentiation of skeletal muscle type-specific MSCs. The identified genes may be used as marker to distinguish skeletal muscle types.

Dose Planning of Forward Intensity Modulated Radiation Therapy for Nasopharyngeal Cancer using Compensating Filters (보상여과판을 이용한 비인강암의 전방위 강도변조 방사선치료계획)

  • Chu Sung Sil;Lee Sang-wook;Suh Chang Ok;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.53-65
    • /
    • 2001
  • Purpose : To improve the local control of patients with nasopharyngeal cancer, we have implemented 3-D conformal radiotherapy and forward intensity modulated radiation therapy (IMRT) to used of compensating filters. Three dimension conformal radiotherapy with intensity modulation is a new modality for cancer treatments. We designed 3-D treatment planning with 3-D RTP (radiation treatment planning system) and evaluation dose distribution with tumor control probability (TCP) and normal tissue complication probability (NTCP). Material and Methods : We have developed a treatment plan consisting four intensity modulated photon fields that are delivered through the compensating tilters and block transmission for critical organs. We get a full size CT imaging including head and neck as 3 mm slices, and delineating PTV (planning target volume) and surrounding critical organs, and reconstructed 3D imaging on the computer windows. In the planning stage, the planner specifies the number of beams and their directions including non-coplanar, and the prescribed doses for the target volume and the permissible dose of normal organs and the overlap regions. We designed compensating filter according to tissue deficit and PTV volume shape also dose weighting for each field to obtain adequate dose distribution, and shielding blocks weighting for transmission. Therapeutic gains were evaluated by numerical equation of tumor control probability and normal tissue complication probability. The TCP and NTCP by DVH (dose volume histogram) were compared with the 3-D conformal radiotherapy and forward intensity modulated conformal radiotherapy by compensator and blocks weighting. Optimization for the weight distribution was peformed iteration with initial guess weight or the even weight distribution. The TCP and NTCP by DVH were compared with the 3-D conformal radiotherapy and intensitiy modulated conformal radiotherapy by compensator and blocks weighting. Results : Using a four field IMRT plan, we have customized dose distribution to conform and deliver sufficient dose to the PTV. In addition, in the overlap regions between the PTV and the normal organs (spinal cord, salivary grand, pituitary, optic nerves), the dose is kept within the tolerance of the respective organs. We evaluated to obtain sufficient TCP value and acceptable NTCP using compensating filters. Quality assurance checks show acceptable agreement between the planned and the implemented MLC(multi-leaf collimator). Conclusion : IMRT provides a powerful and efficient solution for complex planning problems where the surrounding normal tissues place severe constraints on the prescription dose. The intensity modulated fields can be efficaciously and accurately delivered using compensating filters.

  • PDF