• Title/Summary/Keyword: m-term

Search Result 2,775, Processing Time 0.024 seconds

Changes in Atmospheric Mercury Concentrations in Seoul, Korea and its Significance: A Case Study Between 1997 and 2002

  • Kim Ki-Hyun;Kim Min-Young;Hong SM
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.E1
    • /
    • pp.1-11
    • /
    • 2005
  • The concentration levels of gaseous elemental mercury (GEM) in ambient air have been investigated from a monitoring station located in Yang Jae district of Seoul, Korea for a long-term period covering 1997 through 2002. The mean concentration of Hg, if computed based on its hourly measurement data for this six-year period, was $5.32\pm3.53 ng m^{-3} (N = 27,170)$. The inspection of the diurnal distribution patterns indicated the presence of notably high concentration levels during nighttime relative to daytime (e.g., the mean hourly value as high as $9 ng m^{-3}$ in winter nighttime). When divided seasonally, the highest mean of $6.12 ng m^{-3}$ was also observed during winter followed by spring, fall, and summer. The results of our analysis confirmed the relative dominance of winter (seasonally) or nighttime (diurnally), while exhibiting a complicated trend on a long-term basis. Examination of our data over a different temporal scale consistently indicated that dynamic changes in Hg concentrations occurred through time in line with changes in the strength and diversity of the source processes. It is thus acknowledged that the presence of unusually high Hg levels is the consequence of intense man-made activities, while such signatures can vary in a competitive manner.

Effects of Plant on Pollutant Removal Rate n Surface-flow Constructed Wetlands (자유수면형 인공습지에서 식물식재 유무가 처리효율에 미치는 영향)

  • Ham, Jong-Hwa;Kim, Hyung-Joong;Kim, Dong-Hwan;Hong, Dae-Byuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.85-91
    • /
    • 2011
  • Three different types of wetlands (unplanted wetland, reed planted wetland, cattail planted wetland) were constructed at the mouth of Seokmoon reservoir with 910 $m^2$ each to examine the effects of wetland plant on pollutant removal rate in constructed wetland, and operated for 9 years (2002~2010). Water depth of the wetland was maintained at 0.3~0.5 m, flow rate was about 40~200 $m^3$/day, and retention time was managed at about 1~5 days. There was no difference in removal rate of SS, TN, and TP between reed wetland and cattail wetland. Removal rate of SS and TN in planted wetland with reed and cattail were higher than unplanted wetland, whereas removal rate of TP in unplanted wetland was higher then planted wetland. The monthly variation of removal rate in planted wetlands was high compared with unplanted wetland. From the long term monitoring results, SS and TN removal rates of period3 (2008~2010) were higher than period1 (2002~2004) in planted wetland, whereas TP removal rate was decreased as time goes on. Overall, pollutant removal rate in constructed wetland was more influenced by existence of plants than by plant species. Although constructed wetland is operated long term period, SS, TN, and TP removal rate (SS 90 %, TN 60 %, TP 40 %) can be maintained high values.

Earthquake Observation through Groundwater Monitoring: A case of M4.9 Odaesan Earthquake (지하수 모니터링을 통한 지진 감시 가능성: 중규모(M4.9) 오대산 지진의 관측)

  • Lee, Hyun-A;Kim, Min-Hyung;Hong, Tae-Kyung;Woo, Nam-C.
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.3
    • /
    • pp.38-47
    • /
    • 2011
  • Groundwater monitoring data from the National Groundwater Monitoring Stations, a total of 320 stations, were analyzed to identify the response of water level and quality to the Odaesan earthquake (M4.9) occurred in January 2007. Among the total of eight stations responded to the earthquake, five wells showed water-level decline, and in three wells, water level rose. In terms of recovery, water levels in four stations had recovered to the original level in five days, but not in the rest four wells. The magnitude of water-level change shows weak relations to the distance between the earthquake epicenter and the groundwater monitoring station. However, the relations to the transmissivities of monitored aquifer in the station with the groundwater change were not significant. To implement the earthquake monitoring system through the groundwater monitoring network, we still need to accumulate the long-term monitoring data and geostatistically analyze those with hydrogeological and tectonic factors.

Exposure Assessment of Hazardous Chemical Agents for Dental Technicians in Ulsan City (울산지역 치과기공사들의 화학적 유해요인 노출 평가)

  • Hong, Youngho;Choi, Sangjun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.4
    • /
    • pp.215-221
    • /
    • 2011
  • Objectives: This study was conducted to evaluate the exposure level of hazardous chemical agents for dental technicians in Ulsan. Methods: We measured airborne total dusts and metals such as Nickel, Manganese, Cobalt, and Chromium in 10 dental laboratories by the NIOSH Methods 0500 and 7300, respectively. Methyl methacrylate (MMA), a key ingredient in acrylic resin, was also monitored using passive samplers for long-term sampling and Tenax tubes for short-term sampling. Results: Measured levels of all items were below 10% of the Korean exposure limit except for Nickel. The geometric mean concentration and geometric standard deviation of total dust, Nickel, and MMA were $0.14mg/m^3$ (2.16), $165.3{\mu}g/m^3$ (3.31), and 0.2 ppm (2.5) respectively. Airborne Nickel concentration of two dental laboratories exceeded the exposure limit ($1000{\mu}g/m^3$). The major emission sources of Nickel were metal trimming and casting processes. Conclusions: We found that Nickel, a carcinogen, should be controled most urgently to protect dental technicians.

Cryopreservation of in vitro Grown Shoot Tips of Two Freesia hybrida Cultivars by Droplet-vitrification

  • Jinjoo Bae;Jae-Young Song;Ji-Won Han;Ho Cheol Ko;Sung-Hee Nam;Jung-Ro Lee;Ho-sun Lee
    • Korean Journal of Plant Resources
    • /
    • v.36 no.6
    • /
    • pp.562-570
    • /
    • 2023
  • The droplet-vitrification technique for cryopreservation has proven successful across a diverse range of germplasm, ensuring safe and effective long term preservation. In this study, we investigate an effective cryopreservation protocol using the droplet-vitrification technique for shoot tips of Freesia hybrida cultivars 'Sunny Gold' and 'Sweet Lemon'. To determine optimal conditions for Freesia cryopreservation, we employed a carefully selected standard procedure along with additional treatments and alternative solutions. For 'Sunny Gold', the highest regrowth rate of 24% was achieved when shoot tips underwent dehydration with PVS3 solution for 120 minutes before direct immersion in liquid nitrogen (LN) for 1 hour, coupled with a standard protocol involving a two-step preculture with 0.3 M - 0.5 M sucrose, loading with C4 for 40 minutes, and unloading with 0.8 M sucrose for 40 minutes. In the case of 'Sweet Lemon,' regrowth of cryopreserved shoot tips was observed with dehydration treatments, including PVS2 (A3) for 60 minutes and PVS3 (B1) for 60 minutes, as well as longer exposure. The results reflect the distinct sensitivity of shoot tips to chemical toxicity and osmotic stress in these two genotypes. This study provides valuable evidence to consistently enhance the effectiveness of cryopreservation methods for the long-term conservation of Freesia germplasm.

Evaluation of Long Term Operation of Cross-flow Molten Carbonate Fuel Cell Stack (교차류형 100W급 용융탄산염 연료전지 스택 장기운전평가)

  • Lim, H.C.;Seol, J.H.;Ryu, C.S.;Lee, C.W.;Hong, S.A.
    • Journal of Hydrogen and New Energy
    • /
    • v.6 no.2
    • /
    • pp.53-63
    • /
    • 1995
  • A 100kW class stack consisting of 10 molten carbonate fuel cells has been fabricated. Internally manifold stack has been tested for endurance. Each cell in the stack had an electrode area of $100cm^2$ and reactant gases were distributed in each cells in a cross-flow configuration. Initial and long term operation performance of the stack was investgated as a function of gas utilization using a specially designed small scale stack test facility. It was possible to have a stack with an output of more than 100W using an anode gas of 72% $H_2/18%$ $CO_2/10%H_2O$ and cathode gas of 33% $O_2/67%$ $CO_2$ and 70% Air 30% $CO_2$. The output and voltage of the stack at a current 15A($150mA/cm^2$) and gas utilization of 0.4 showed 125.8W and 8.39V respectively by elapsed time of 310 hours operation. In long term operation characteristics, the voltage drop of 52.4mV/1000hour was observed after more than 1,840 hours operation. Among the voltage drop, the OCV loss was highest than other voltage loss such as internal resistance and electrode polarization. Non uniformity of 2voltages and degradation of cell voltage in the stack was observed in according to changing the utilization rate after a long term operation. Further work for increasing the performance prolonging the life of the stack are required.

  • PDF

The Long-term Variation Patterns of Atmospheric Mercury in Seoul, Korea from 1997 to 2002 (서울시 대기 중 수은농도의 장기변동 특성 1997~2002)

  • 김민영;김기현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.2
    • /
    • pp.179-189
    • /
    • 2003
  • The concentration of gaseous elemental mercury (Hg) was measured concurrently with relevant environmental parameters from Yang-Jae monitoring station in Seoul during Sept. 1997 to June 2002. Although data collection was disrupted for certain periods, the grand mean concentration of Hg for this five year period was found at 5.32 $\pm$ 3.53 ng m$^{-3}$ (N = 27,170). Because of short resolution of data acquisition, we were able to examine the temporal variability of Hg at varying time scale. The diurnal variability of Hg, when investigated for each of those five years, indicated consistently the dominance of nighttime over daytime. If examined at seasonal scale, Hg level was systematically higher during winter/spring than summer/fall period. The results of this short-term variability were best explained by the combined effects of such factors as meteorological conditions (formation of inversion layer and seasonal changes) and anthropogenic source processes. However, examination of long-term variation Pattern was much more complicated to explain. Thus, extension of our study is needed to diagnose the future direction in long-term trend of Hg behavior.

A Study on the Characteristics of Long-term Settlement for Solid Waste Landfill (폐기물매립지의 장기침하 특성에 관한 연구)

  • Park, Jeong Jun;Shin, Eun Chul;Kim, Dong Sik
    • Journal of the Society of Disaster Information
    • /
    • v.4 no.2
    • /
    • pp.52-66
    • /
    • 2008
  • It has been a growing concern about reusing Sudokwon landfill 2nd site and other sanitary landfills located around the metropolitan areas. In this paper, settlement characteristics of Sudokwon landfill 2nd site were studied by analyzing the data collected over the period of six years. Three equations are combined in order to modeling the long-term settlement behavior of refuse landfill caused by mechanical secondary composition and secondary composition caused by the decomposition of biodegradable refuse. It is suggested that mechanical secondary composition is linear with respect to the logarithm of time. The models proposed by hyperbolic method and Gibson & Lo model, power creep law are considered to be suitable for the long-term prediction value of Sudokwon landfill 2nd site. The fifteen-year-period prediction value of hyperbolic method and Gibson & Lo model is considerably different from that of power creep law model. The average settlement for Block I in Sudokwon 2nd site is approximately 3.9m with 4 steps of final landfill stages.

  • PDF

HIGH RESOLUTION SPECTROSCOPIC STUDY OF SYMBIOTIC STAR AG DRACONIS

  • KIM, SOO HYUN;YOON, TAE SEOG;OH, HYUNG-IL
    • Publications of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.13-31
    • /
    • 2022
  • We observed the symbiotic star AG Dra for a total of 61 nights between April 2004 and December 2021 using the 1.8-m telescope and the high-resolution Echelle spectrograph BOES at the Bohyunsan Optical Astronomy Observatory and obtained 355 frames of spectroscopic data to investigate the variations in its spectral lines. Overnight short-term and long-term changes in prominent emission lines are examined. No short-term changes are found in the line profiles. However, the peak intensity of the Hα emission line exhibits very small variation. In the long-term period, many emission lines including He I λ5875, λ6678, λ7065 and Fe II λ5018 are found to vary reflecting the symbiotic outburst activities. It is noted that He II λ4686 and Raman-scattered O VI λ6830, λ7088 are exceptions, where no significant variations are discernible. One of the noticeable lines is the λ5018 line. Its appearance and disappearance pattern are different from other emission lines, and the line is found to appear in outburst states. The Hα and Hβ lines remain very similar in our spectroscopic monitoring campaign.

Sensitivity analysis of the FAO Penman-Monteith reference evapotranspiration model (FAO Penman-Monteith 기준증발산식 민감도 분석)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.285-299
    • /
    • 2023
  • Estimating the evapotranspiration is very important factor for effective water resources management, and FAO Penman-Monteith (FAO P-M) model has been applied for reference evapotranspiration estimation by many researchers. However, because various input data are required for the application of FAO P-M model, understanding the effect of each input data on FAO P-M model is necessary. Therefore, in this study, for 56 study stations located in South Korea, the effects of 8 meteorological factors (maximum and minimum temperature, wind speed, relative humidity, solar radiation, vapor pressure deficit, net radiation, ground heat flux), energy and aerodynamic terms of FAO P-M model, and elevation on FAO P-M reference evapotranspiration (RET) estimation were analyzed. The relative sensitivity analysis was performed to determine how 10% increment of each specific independent variable affects a reference evapotranspiration under given set of condition that other independent variables are unchanged. Furthermore, to select the 5 representative stations and perform the monthly relative sensitivity analysis for those stations, 56 study stations were classified into 5 clusters using cluster analysis. The study results showed that net radiation was turned out to be the most sensitive factor in 8 meteorological factors for 56 study stations. The next most sensitive factor was relative humidity, solar radiation, maximum temperature, vapor pressure deficit and wind speed, followed by minimum temperature in order. Ground heat flux was the least sensitive factor. In case of ground surface condition, elevation showed very low positive relative sensitivity. Relativity sensitivities of energy and aerodynamic terms of FAO P-M model were 0.707 for energy term and 0.293 for aerodynamic term respectively, indicating that energy term was more contributable than aerodynamic term for reference evapotranspiration. The monthly relative sensitivities of meteorological factors showed the seasonal effects, and also the relative sensitivity of elevation showed different pattern each other among study stations. Therefore, for the application of FAO P-M model, the seasonal and regional sensitivity differences of each input variable should be considered.