• Title/Summary/Keyword: m-dimensional linear process

Search Result 33, Processing Time 0.023 seconds

THE CENTRAL LIMIT THEOREMS FOR THE MULTIVARIATE LINEAR PROCESS GENERATED BY WEAKLY ASSOCIATED RANDOM VECTORS

  • Kim, Tae-Sung;Ko, Mi-Hwa
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.1
    • /
    • pp.11-20
    • /
    • 2003
  • Let{Xt}be an m-dimensional linear process of the form (equation omitted), where{Zt}is a sequence of stationary m-dimensional weakly associated random vectors with EZt = O and E∥Zt∥$^2$$\infty$. We Prove central limit theorems for multivariate linear processes generated by weakly associated random vectors. Our results also imply a functional central limit theorem.

FUNCTIONAL CENTRAL LIMIT THEOREMS FOR MULTIVARIATE LINEAR PROCESSES GENERATED BY DEPENDENT RANDOM VECTORS

  • Ko, Mi-Hwa
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.4
    • /
    • pp.779-786
    • /
    • 2006
  • Let $\mathbb{X}_t$ be an m-dimensional linear process defined by $\mathbb{X}_t=\sum{_{j=0}^\infty}\;A_j\;\mathbb{Z}_{t-j}$, t = 1, 2, $\ldots$, where $\mathbb{Z}_t$ is a sequence of m-dimensional random vectors with mean 0 : $m\times1$ and positive definite covariance matrix $\Gamma:m{\times}m$ and $\{A_j\}$ is a sequence of coefficient matrices. In this paper we give sufficient conditions so that $\sum{_{t=1}^{[ns]}\mathbb{X}_t$ (properly normalized) converges weakly to Wiener measure if the corresponding result for $\sum{_{t=1}^{[ns]}\mathbb{Z}_t$ is true.

On a functional central limit theorem for the multivariate linear process generated by positively dependent random vectors

  • KIM TAE-SUNG;BAEK JONG IL
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.119-121
    • /
    • 2000
  • A functional central limit theorem is obtained for a stationary multivariate linear process of the form $X_t=\sum\limits_{u=0}^\infty{A}_{u}Z_{t-u}$, where {$Z_t$} is a sequence of strictly stationary m-dimensional linearly positive quadrant dependent random vectors with $E Z_t = 0$ and $E{\parallel}Z_t{\parallel}^2 <{\infty}$ and {$A_u$} is a sequence of coefficient matrices with $\sum\limits_{u=0}^\infty{\parallel}A_u{\parallel}<{\infty}$ and $\sum\limits_{u=0}^\infty{A}_u{\neq}0_{m{\times}m}$. AMS 2000 subject classifications : 60F17, 60G10.

  • PDF

A FUNCTIONAL CENTRAL LIMIT THEOREM FOR MULTIVARIATE LINEAR PROCESS WITH POSITIVELY DEPENDENT RANDOM VECTORS

  • KO, MI-HWA;KIM, TAE-SUNG;KIM, HYUN-CHULL
    • Honam Mathematical Journal
    • /
    • v.27 no.2
    • /
    • pp.301-315
    • /
    • 2005
  • Let $\{A_u,\;u=0,\;1,\;2,\;{\cdots}\}$ be a sequence of coefficient matrices such that ${\sum}_{u=0}^{\infty}{\parallel}A_u{\parallel}<{\infty}$ and ${\sum}_{u=0}^{\infty}\;A_u{\neq}O_{m{\times}m}$, where for any $m{\times}m(m{\geq}1)$, matrix $A=(a_{ij})$, ${\parallel}A{\parallel}={\sum}_{i=1}^m{\sum}_{j=1}^m{\mid}a_{ij}{\mid}$ and $O_{m{\times}m}$ denotes the $m{\times}m$ zero matrix. In this paper, a functional central limit theorem is derived for a stationary m-dimensional linear process ${\mathbb{X}}_t$ of the form ${\mathbb{X}_t}={\sum}_{u=0}^{\infty}A_u{\mathbb{Z}_{t-u}}$, where $\{\mathbb{Z}_t,\;t=0,\;{\pm}1,\;{\pm}2,\;{\cdots}\}$ is a stationary sequence of linearly positive quadrant dependent m-dimensional random vectors with $E({\mathbb{Z}_t})={{\mathbb{O}}$ and $E{\parallel}{\mathbb{Z}_t}{\parallel}^2<{\infty}$.

  • PDF

A Functional Central Limit Theorem for the Multivariate Linear Process Generated by Negatively Associated Random Vectors

  • Kim, Tae-Sung;Seo, Hye-Young
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.615-623
    • /
    • 2001
  • A functional central limit theorem is obtained for a stationary multivariate linear process of the form (no abstract. see full-text) where{ $Z_{t}$} is a sequence of strictly stationary m-dimensional negatively associated random vectors with E $Z_{t}$=O and E∥ $Z_{t}$$^2$<$\infty$ and { $A_{u}$} is a sequence of coefficient matrices with (no abstract. see full-text) and (no abstract. see full-text).text).).

  • PDF

THE CENTRAL LIMIT THEOREMS FOR THE MULTIVARIATE LINEAR PROCESSES GENERATED BY NEGATIVELY ASSOCIATED RANDOM VECTORS

  • Kim, Tae-Sung;Ko, Mi-Hwa;Ro, Hyeong-Hee
    • The Pure and Applied Mathematics
    • /
    • v.11 no.2
    • /
    • pp.139-147
    • /
    • 2004
  • Let {<$\mathds{X}_t$} be an m-dimensional linear process of the form $\mathbb{X}_t\;=\sumA,\mathbb{Z}_{t-j}$ where {$\mathbb{Z}_t$} is a sequence of stationary m-dimensional negatively associated random vectors with $\mathbb{EZ}_t$ = $\mathbb{O}$ and $\mathbb{E}\parallel\mathbb{Z}_t\parallel^2$ < $\infty$. In this paper we prove the central limit theorems for multivariate linear processes generated by negatively associated random vectors.

  • PDF

ANALYTIC TREATMENT FOR GENERALIZED (m + 1)-DIMENSIONAL PARTIAL DIFFERENTIAL EQUATIONS

  • AZ-ZO'BI, EMAD A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.4
    • /
    • pp.289-294
    • /
    • 2018
  • In this work, a recently developed semi-analytic technique, so called the residual power series method, is generalized to process higher-dimensional linear and nonlinear partial differential equations. The solutions obtained takes a form of an infinite power series which can, in turn, be expressed in a closed exact form. The results reveal that the proposed generalization is very effective, convenient and simple. This is achieved by handling the (m+1)-dimensional Burgers equation.

ON A CENTRAL LIMIT THEOREM FOR A STATIONARY MULTIVARIATE LINEAR PROCESS GENERATED BY LINEARLY POSITIVE QUADRANT DEPENDENT RANDOM VECTORS

  • Kim, Tae-Sung
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.119-126
    • /
    • 2002
  • For a stationary multivariate linear process of the form X$_{t}$ = (equation omitted), where {Z$_{t}$ : t = 0$\pm$1$\pm$2ㆍㆍㆍ} is a sequence of stationary linearly positive quadrant dependent m-dimensional random vectors with E(Z$_{t}$) = O and E∥Z$_{t}$$^2$< $\infty$, we prove a central limit theorem.theorem.

Registration of Three-Dimensional Point Clouds Based on Quaternions Using Linear Features (선형을 이용한 쿼터니언 기반의 3차원 점군 데이터 등록)

  • Kim, Eui Myoung;Seo, Hong Deok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.175-185
    • /
    • 2020
  • Three-dimensional registration is a process of matching data with or without a coordinate system to a reference coordinate system, which is used in various fields such as the absolute orientation of photogrammetry and data combining for producing precise road maps. Three-dimensional registration is divided into a method using points and a method using linear features. In the case of using points, it is difficult to find the same conjugate point when having different spatial resolutions. On the other hand, the use of linear feature has the advantage that the three-dimensional registration is possible by using not only the case where the spatial resolution is different but also the conjugate linear feature that is not the same starting point and ending point in point cloud type data. In this study, we proposed a method to determine the scale and the three-dimensional translation after determining the three-dimensional rotation angle between two data using quaternion to perform three-dimensional registration using linear features. For the verification of the proposed method, three-dimensional registration was performed using the linear features constructed an indoor and the linear features acquired through the terrestrial mobile mapping system in an outdoor environment. The experimental results showed that the mean square root error was 0.001054m and 0.000936m, respectively, when the scale was fixed and if not fixed, using indoor data. The results of the three-dimensional transformation in the 500m section using outdoor data showed that the mean square root error was 0.09412m when the six linear features were used, and the accuracy for producing precision maps was satisfied. In addition, in the experiment where the number of linear features was changed, it was found that nine linear features were sufficient for high-precision 3D transformation through almost no change in the root mean square error even when nine linear features or more linear features were used.

A FUNCTIONAL CENTRAL LIMIT THEOREM FOR LINEAR RANDOM FIELD GENERATED BY NEGATIVELY ASSOCIATED RANDOM FIELD

  • Ryu, Dae-Hee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.507-517
    • /
    • 2009
  • We prove a functional central limit theorem for a linear random field generated by negatively associated multi-dimensional random variables. Under finite second moment condition we extend the result in Kim, Ko and Choi[Kim,T.S, Ko,M.H and Choi, Y.K.,2008. The invariance principle for linear multi-parameter stochastic processes generated by associated fields. Statist. Probab. Lett. 78, 3298-3303] to the negatively associated case.

  • PDF