• 제목/요약/키워드: luxCDABE

검색결과 20건 처리시간 0.02초

Detection of Aromatic Pollutants by Bacterial Biosensors Bearing Gene Fusions Constructed with the dnaK Promoter of Pseudomonas sp. DJ-12

  • Park, Sang-Ho;Lee, Dong-Hun;Oh, Kye-Heon;Lee, Kyoung;Kim, Chi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권3호
    • /
    • pp.417-422
    • /
    • 2002
  • Gene fusions were constructed by the transcriptional fusion of the dnaK promoter of pseudomonas sp. DJ-12 or E. coli to the lux or luc marker gene. The dnaKp-DJ::luxCDABE bioluminescent fusion in the biosensor using the Pseudomonas sp. DJ-12 dnaK promoter exhibited about 5-fold more extensive response to ethanol than that of dnaKp-EC::luxCDABE. The bioluminescent response of the dnaK-DJ::luc fusion to ethanol was much weaker than those of the other fusions. The biosensor harboring the dnaKp-DJ::luCDABE fusion was examined for its bioluminescence production based on exposure to aromatic compounds, such as biphenyl, 4-chlorobiphenyl (4CB), 4-hydroxybenzoate (4HBA), and catechol. In particular, the bioluminescence produced by the dnaKp-DJ::luxCDABE fusion was most sensitive to 1 mM biphenyl and 4CB when exposed for 80 min, and the responses were also very strong to other aromatics. Therefore, the biosensor bearing the dnaKp-DJ::luxCDABE fusion would appear to be the most useful for the detection of aromatics and other pollutants.

Response of Bioluminescent Bacteria to Sixteen Azo Dyes

  • Lee, Hwa-Young;Park, Sue-Hyung;Gu, Man-Bock
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권2호
    • /
    • pp.101-105
    • /
    • 2003
  • Recombinant bioluminescent bacteria were used to monitor and classify the to xicity of azo dyes. Two constitutive bioluminescent bacteria, Photobacterium phosphoreum and Es-Cherichia coli, E, coli GC2 (lac::luxCOABE), were used to detect the cellular toxicity of the azo dyes. In addition, four stress-inducible bioluminestent E. coli, DPD2794 (recA::luxCDABE), a DNA damage Sensitive strain; DPD2540 (fabA::luxCDABE), a membrane damage sensitive strain; DPD2511 (katG::luxCDABE), an oxidative damage sensitive strain; and TV1061 (grpE::luxCDABE), a protein damage sensitive strain, were used to provide information about the type of toxicity caused by crystal violet, the most toxic dye of the 16 azo dyes tested. These results suggest that azo dyes result in serious cellular toxicity in bacteria, and that toxicity monitoring and classific ation of some azo dyes, In the field, may be possible using these recombinant bioluminescent bacteria.

Comparison of Photorhabdus luminescens and Vibrio fischeri lux Fusions to Study Gene Expression Patterns

  • MITCHELL, ROBERT J.;AHN, JOO-MYUNG;GU, MAN BOCK
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.48-54
    • /
    • 2005
  • A comparison of promoter fusions with the luxCDABE genes from Vibrio fischeri and Photorhabdus luminescens was made using promoters from several genes (katG, sodA, and pqi-5) of E. coli that are responsive to oxidative damage. The respective characteristics, such as the basal and maximum bioluminescence and the relative bioluminescence, were compared. E. coli strains carrying fusions of the promoters to P. luminescens lux showed higher basal and maximally induced bioluminescent levels than strains carrying the same promoter fused to the luxCDABE genes from V. fischeri. The sensitivities between the strains were similar, regardless of the luciferase used, but lower response ratios were seen from strains harboring the P. luminescens lux fusions. Furthermore, using the two katG::lux fusion strains, the bioluminescence from the P. luminescens lux fusion strain, DK1, was stable after reaching a maximum, while that of strain DPD2511 decreased very rapidly due to substrate limitation.

Genotoxicity Assay Using Chromosomally-Integrated Bacterial recA::Lux

  • Min, Ji-Ho;Gu, Man-Bock
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권1호
    • /
    • pp.99-103
    • /
    • 2003
  • An Escherichia coli strain containing the recA promoter that fused to the luxCDABE operon originating from Photorhabdus luminescens was shown to respond sensitively to genotoxic stresses. Two different recombinant bacteria, one (DPDI 657) harboring a plasmid with the recA promoter that fused to the luxCDABE operon, and the other (DPD1710) containing a chromosomally-integrated recA promoter that fused with luxCDABE, were compared and it was found that the sensitivity of 'the two strains was significantly different in terms of their bioluminescent level, response time, and the minimum detectable concentration of a chemical causing DNA damaging stress. DPDI 710, with a chromosomally-integrated single copy, generally led to lower basal luminescence levels, faster responses, increased response ratios, and an enhanced sensitivity to mutagens, when compared to DPD 1657 with a multi-copy plasmid.

Toxicity Monitoring of Endocrine Disrupting Chemicals (EDCs) Using Freeze-dried Recombinant Bioluminescent Bacteria

  • Kim, Sung-Woo;Park, Sue-Hyung;Jiho Min;Gu, Man-Bock
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권6호
    • /
    • pp.395-399
    • /
    • 2000
  • Five different freeze-dried recombinant bioluminescent bacteria were used for the detection of cellular stresses caused by endocrine disrupting chemicals. These strains were DPD2794 (recA::luxCDABE), which is sensitive to DNA damage, DPD2540 (fabA::luxCDABE), sensitive to cellular membrane damage, DPD2511 (katG::luxCDABE), sensitive to oxidative damage, and TV1061 (grpE::luxCDABE), sensitive to protein damage. GC2, which emits bioluminescence constitutively, was also used in this study. The toxicity of several chemicals was measured using GC2. Damage caused by known endocrine disrupting chemicals, such as nonyl phenol, bisphenol A, and styrene, was detected and classified according to toxicity mode, while others, such as phathalate and DDT, were not detected with the bacteria. These results suggest that endocrine disrupting chemicals are toxic in bacteria, and do not act via an estrogenic effect, and that toxicity monitoring and classification of some endocrine disrupting chemicals may be possible in the field using these freeze-dried recombinant bioluminescent bacteria.

  • PDF

A Study on Gamma ray effects on Stress Response and Cellular Toxicity using Bacterial Cells

  • 민지호;이현주;이창우;구만복
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.187-190
    • /
    • 2000
  • 본 연구는 5가지의 발광성 미생물을 이용하여 유해 방사선으로 알려져 있는 ${\gamma}-rays$가 여러가지 cellular stresses 중, 특히 유전자 손상과 생물막 손상을 유발하였는데, 이들의 손상 정도가 총 방사선량과 상관관계가 있음을 발생하는 bioluminescence 로써 확인하였다. 뿐만 아니라, 선량률의 변화를 통하여 방사선으로 인한 유전자 손상 및 일반적인 독성 효과가 큰 영향을 받는 것을 확인하였는데, 선량률 증가에 따라 이들 손상정도가 증가하는 것으로 보아 선량률이 genetic 및 radioprotecion에 심각한 영향을 미치는 것을 확인하였다.

  • PDF

Characterization of gltA::luxCDABE Fusion in Escherichia coli as a Toxicity Biosensor

  • Ahn, Joo-Myung;Kim, Byoung-Chan;Gu, Man-Bock
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권6호
    • /
    • pp.516-521
    • /
    • 2006
  • The use of gltA gene, as a new biomarker for environmental stress biomonitoring, was investigated because of its key position as the first enzyme of the tricarboxylic acid (TCA) cycle. A recombinant bioluminescent Escherichia coli strain, EBJM2, was constructed using a plasmid carrying the citrate synthase (gltA) promoter transcribing the Photorhabdus luminescens IuxCDABE genes (gltA::luxCDABE). The responses from this strain were studied with five different classes of toxicants: DNA damage chemicals, phenolics, oxidative-stress chemicals, PAHs, and organic solvents. EBJM2 responded strongly to DNA damage chemicals, such as mitomycin C (MMC) and methyl-nitro-nitrosoguanidine (MNNG) and nalidixic acid with the strongest responses. In contrast, tests with several compounds from the other four classes of toxicants gave no significant response. Therefore, EBJM2 was found to be sensitive to DNA damage chemicals.

Measurement of Iron-dependence of pupA Promoter Activity by a pup-lux Bioreporter

  • Khang, Yong-Ho;Yang, Zamin-K.;Burlage, Robert-S.
    • Journal of Microbiology and Biotechnology
    • /
    • 제7권5호
    • /
    • pp.352-355
    • /
    • 1997
  • The promoter region of the pupA gene of Pseudomonas putida WCS358 was fused with the structural genes for bioluminescence (luxCDABE) from Vibrio fischeri, and the resulting fusion plasmid harbored by the WCS358 host. The pup-lux fusion gene was then used for quantitative analysis of the iron-dependence of pupA promoter activity. Factors affecting bioluminescence produced by the pup-lux bioreporter were found to be cell activity, iron-chelator concentrations, Fe(III) concentrations, and nutrient components. Light production rates of the pup-lux bioreporter were inversely dependent upon iron molecules when $FeCl_3$ concentrations were between $10^{-2}$ and 1 ${\mu}M$ in nutrient-poor minimal media, and between 0.1 and 10 mM in nutrient-rich complex media.

  • PDF