• 제목/요약/키워드: lung mitochondria

검색결과 38건 처리시간 0.026초

Changes in Cytochrome c Oxidase and NO in Rat Lung Mitochondria Following Iron Overload

  • Kim, Min-Sun;Hong, Min-A;Song, Eun-Sook
    • Animal cells and systems
    • /
    • 제13권2호
    • /
    • pp.105-112
    • /
    • 2009
  • In this study, the effects of iron on cytochrome c oxidase (CcO) in rat lung mitochondria were examined. Similar to liver mitochondria, iron accumulated considerably in lung mitochondria (more than 2-fold). Likewise, the reactive oxygen species and nitric oxide (NO) content of mitochondria were increased by more than 50% and 100%, respectively. NO might be produced by nitric oxide synthase (NOS), eNOS and iNOS type, with particular contribution by NOS in mitochondria. The respiratory control ratio of iron overloaded lung mitochondria dropped to nearly 50% due to increased state 4. Likewise, cytochrome c oxidase activity was lowered significantly to approximately 50% due to excess iron. Real-time PCR revealed that the expression of isoforms 1 and 2 of subunit IV of CeO was enhanced greatly under excess iron conditions. Taken together, these results show that oxidative phosphorylation within lung mitochondria may be influenced by iron overload through changes in cytochrome c oxidase and NO.

Bufalin Induces Mitochondrial Pathway-Mediated Apoptosis in Lung Adenocarcinoma Cells

  • Ding, Da-Wei;Zhang, Yong-Hong;Huang, Xin-En;An, Qing;Zhang, Xun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10495-10500
    • /
    • 2015
  • Background: To evaluate the effects of bufalin in A549 human lung adenocarcinoma epithelial cells in vitro and assess the underlying mechanisms. Materials and Methods: Human A549 non-small cell lung cancer (NSCLC) cells were treated with various concentrations of bufalin. Cell proliferation was measured by CCK-8 assay, apoptotic cell percentage was calculated by flow cytometry and morphological change was observed by inverted phase contrast microscopy/transmission electron microscopy. In addition, the membrane potential of mitochondria was detected by JC-1 fluorescence microscopy assay, and the related protein expression of cytochrome C and caspase-3 was analyzed by Western blotting. Results: Bufalin could inhibit the proliferation of A549 cells via induction of apoptosis, with the evidence of characteristic morphological changes in the nucleus and mitochondria. Furthermore, bufalin decreased the mitochondrial membrane potential with up-regulation of cytochrome C in the cytosol, and activation of caspase-3. Conclusions: Bufalin inhibits the proliferation of A549 cells and triggers mitochondria-dependent apoptosis, pointing to therapeutic application for NSCLC.

Preferential Killing of Human Lung Cancer Cell Lines with Mitochondrial Dysfunction by Non-Thermal Dbd Plasma

  • Panngom, Kamonporn;Baik, Ku Youn;Nam, Min-Kyung;Rhim, Hyang-Shuk;Choi, Eun Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.199-199
    • /
    • 2013
  • The distinctive cellular and mitochondrial dysfunctions of a human epithelial lung cancer cell line (H460) from a human lung fibroblastic normal cell line (MRC5) have been studied by dielectric barrier discharge (DBD) plasma treatment. The DBD plasma device have generated large amount of H2O2 and NOx in culture media which is dependent on plasma exposure time. It is found that the cell number of lung cancer cell H460 has been reduced more than the lung normal cell MRC5 as being increased exposure and incubation time. Also these both cell lines have showed mitochondria fragmentation under 5 minutes' plasma exposure, which is a clue of apoptosis. It is noted in this study that AnnexinV staining has showed not only early apoptosis, but also late apoptosis in lung cancer cell H460. Mitochondria enzyme activity and ATP generation have been also much reduced in lung cancer cell H460. Their mitochondrial membrane potential (${\Delta}{\psi}m$) has been found to be reduced in magnitude and shifted to the induced-potential level of cccp, while MRC5 mitochondrial membrane potential has been shifted slightly to that. These distinctively selective responses of lung cancer cell H460 from lung normal cell MRC5 gives us possibility of applying plasma to cancer therapy.

  • PDF

Rg3-enriched red ginseng extract promotes lung cancer cell apoptosis and mitophagy by ROS production

  • Hwang, Soon-Kyung;Jeong, Yun-Jeong;Cho, Hyun-Ji;Park, Yoon-Yub;Song, Kwon-Ho;Chang, Young-Chae
    • Journal of Ginseng Research
    • /
    • 제46권1호
    • /
    • pp.138-146
    • /
    • 2022
  • Background: Red Ginseng has been used for many years to treat diseases. Ginsenoside Rg3 has documented therapeutic effects, including anticancer and anti-inflammatory activities. However, the anticancer effect of Rg3-enriched red ginseng extract (Rg3-RGE) and its underlying mechanisms have not been fully explored. We investigated whether Rg3-RGE plays an anti-tumor role in lung cancer cells. Methods: To examine the effect of Rg3-RGE on lung cancer cells, we performed cell viability assays, flow cytometry, western blotting analysis, and immunofluorescence to monitor specific markers. Results: Rg3-RGE significantly inhibited cell proliferation and induced mitochondria-dependent apoptosis. Furthermore, Rg3-RGE also increased expression of mitophagy-related proteins such as PINK1 and Parkin. In addition, treatment with Rg3-RGE and mitophagy inhibitors stimulated cell death by inducing mitochondria dysfunction. Conclusions: Rg3-RGE could be used as a therapeutic agent against lung cancer.

Evaluation and interpretation of transcriptome data underlying heterogeneous chronic obstructive pulmonary disease

  • Ham, Seokjin;Oh, Yeon-Mok;Roh, Tae-Young
    • Genomics & Informatics
    • /
    • 제17권1호
    • /
    • pp.2.1-2.12
    • /
    • 2019
  • Chronic obstructive pulmonary disease (COPD) is a type of progressive lung disease, featured by airflow obstruction. Recently, a comprehensive analysis of the transcriptome in lung tissue of COPD patients was performed, but the heterogeneity of the sample was not seriously considered in characterizing the mechanistic dysregulation of COPD. Here, we established a new transcriptome analysis pipeline using a deconvolution process to reduce the heterogeneity and clearly identified that these transcriptome data originated from the mild or moderate stage of COPD patients. Differentially expressed or co-expressed genes in the protein interaction subnetworks were linked with mitochondrial dysfunction and the immune response, as expected. Computational protein localization prediction revealed that 19 proteins showing changes in subcellular localization were mostly related to mitochondria, suggesting that mislocalization of mitochondria-targeting proteins plays an important role in COPD pathology. Our extensive evaluation of COPD transcriptome data could provide guidelines for analyzing heterogeneous gene expression profiles and classifying potential candidate genes that are responsible for the pathogenesis of COPD.

태음인의 비만경향에 대한 미토콘드리아 가설 (Mitochondria Hypothesis on the Obesity-Prone Tendency in Tae-Eum People)

  • 심은보;이시우;김성준;임채헌;권영규;백유상;김종열;엄융의
    • 동의생리병리학회지
    • /
    • 제23권6호
    • /
    • pp.1241-1246
    • /
    • 2009
  • It has been suggested that Tae-Eum peoples are prone to obesity. Although extensive clinical observations have shown this tendency in Sasang Constitutional Medicine (SCM), no scientific hypothesis has been proposed to delineate its mechanism. According to SCM theory, Tae-Eum peoples have a hypoactive lung system and a hyperactive liver system. In this paper we propose a new hypothesis explaining the tendency of obesity in Tae-Eum people in the viewpoint of cell physiology. The hypoactive lung system might imply an attenuated 'respiration' at the cell/subcell level, namely mitochondrial oxygen consumption. Because a functional weakness in mitochondria energy metabolism indicates intrinsic hypo-activity in the consumption (or production) of metabolic energy, we deduced that the tendency can easily induce body weight gain via an increase in anabolism. This relation is also introduced in the graph of cellular metabolic power against body weight. To test this hypothesis, we analyzed the clinical data with 863 subjects. Statistical analysis of the data showed that Tae-Eum peoples had relatively a lower cellular metabolic power, and that the percentage of peoples with BMI>25 was significantly higher than that of the other constitutional types.

인태아 폐의 신경상피소체와 신경종말에 관한 미세구조적 연구 (Innervation of Neuroepithelial Bodies in Bronchiolar Epithelium of Human Fetal Lung)

  • 민용일;윤재룡
    • Applied Microscopy
    • /
    • 제25권1호
    • /
    • pp.48-64
    • /
    • 1995
  • Ultrastructure of nerves and their associated cells in the bronchiolar epithelium of the human fetal lung were studied with ultrastructural and immunohistochemical methods. The neuroendocrine cells were scattered along the basal part of non-ciliated respiratory epithelium and appeared as single cell (solitary neuroendocrine cell) or groups (neuroepithelial bodies). The solitary neuroendocrine cells were devoid of any detectable innervation, while the neuroepithelial bodies were associated with nerve ending containing morphologically afferent (sensory) and efferent (motor) intraepithelial terminals. The afferent nerve endings contained abundant mitochondria with long cristae. The efferent nerve endings were characterized by the presence of synaptic vesicles. Both types of nerve endings formed synaptic junction between nerve endings and neuroepithelial bodies cells. Serial sections of the intraepithelial nerves revealed that both morphologically afferent and efferent types of nerve endings may be formed by the same nerve fiber. By immunohistochemistry, bombesin and serotonin were localized in solitary neuroendocrine cells and neuroepithelial bodies of human fetal lung from various prenatal age groups. These results suggest that the neuroepithelial bodies cells of the human fetal lung have neuroreceptor function.

  • PDF

Promising Therapeutic Effects of Embryonic Stem Cells-Origin Mesenchymal Stem Cells in Experimental Pulmonary Fibrosis Models: Immunomodulatory and Anti-Apoptotic Mechanisms

  • Hanna Lee;Ok-Yi Jeong;Hee Jin Park;Sung-Lim Lee;Eun-yeong Bok;Mingyo Kim;Young Sun Suh;Yun-Hong Cheon;Hyun-Ok Kim;Suhee Kim;Sung Hak Chun;Jung Min Park;Young Jin Lee;Sang-Il Lee
    • IMMUNE NETWORK
    • /
    • 제23권6호
    • /
    • pp.45.1-45.22
    • /
    • 2023
  • Interstitial lung disease (ILD) involves persistent inflammation and fibrosis, leading to respiratory failure and even death. Adult tissue-derived mesenchymal stem cells (MSCs) show potential in ILD therapeutics but obtaining an adequate quantity of cells for drug application is difficult. Daewoong Pharmaceutical's MSCs (DW-MSCs) derived from embryonic stem cells sustain a high proliferative capacity following long-term culture and expansion. The aim of this study was to investigate the therapeutic potential of DW-MSCs in experimental mouse models of ILD. DW-MSCs were expanded up to 12 passages for in vivo application in bleomycin-induced pulmonary fibrosis and collagen-induced connective tissue disease-ILD mouse models. We assessed lung inflammation and fibrosis, lung tissue immune cells, fibrosis-related gene/protein expression, apoptosis and mitochondrial function of alveolar epithelial cells, and mitochondrial transfer ability. Intravenous administration of DWMSCs consistently improved lung fibrosis and reduced inflammatory and fibrotic markers expression in both models across various disease stages. The therapeutic effect of DW-MSCs was comparable to that following daily oral administration of nintedanib or pirfenidone. Mechanistically, DW-MSCs exhibited immunomodulatory effects by reducing the number of B cells during the early phase and increasing the ratio of Tregs to Th17 cells during the late phase of bleomycin-induced pulmonary fibrosis. Furthermore, DW-MSCs exhibited anti-apoptotic effects, increased cell viability, and improved mitochondrial respiration in alveolar epithelial cells by transferring their mitochondria to alveolar epithelial cells. Our findings indicate the strong potential of DW-MSCs in the treatment of ILD owing to their high efficacy and immunomodulatory and anti-apoptotic effects.

울금(鬱金)이 폐암(肺癌), 자궁암(子宮癌), 신경교종(神經膠腫) 및 전립선암(前立腺癌)에 대한 세포자살유도(細胞自殺誘導)에 미치는 영향(影響) (Induction of Apoptosis by Curcuma aromatica on Lung Cancer Cells(A549), Cervical Cancer Cells(HeLa), Glioma Cancer Cells(A172) and Prostate Cancer Cells(PC3))

  • 박상현;김진성;윤상협;류봉하
    • 대한한방내과학회지
    • /
    • 제27권2호
    • /
    • pp.379-393
    • /
    • 2006
  • Objectives: We are aimed to identify anti-tumor effects of Curcuma aromatics on some kinds of cancer cells through molecular biologic methods. Materials & Methods: We used 4 kinds of cancer cell lines such as lung cancer cells(AS49), cervical cancer cells(HeLa), glioma cancer cells(A172) and prostate cancer cells(PC3). We treated the boiled extract of Curcuma aromatica $5{\mu}g,\;10{\mu}g$ to cultural media(ml) for 24 hours. We measured the cytotoxicitv on 4 kinds of cancer cells through tryphan blue exclusion test and the suppressive effect on viability of 4 kinds of cancer cells via MTT assay. We measured change of mitochondria membrane potential via flow cytometry. The quantitative RT-PCR was used to examine the effect on the revelation of Bcl-2 and Bax which are genes related to apoptosis. We examined the effect on the revelation of Bcl-2 Protein and Bar protein by western blot analysis. Results : In the experiment of tryphan blue exclusion test, the extract of Curcuma aromatica showed more significant killing effect on AS49, HeLa than the control group with density dependent manner, which was statistically significant. In the experiment of MTT assay the extract of Curcuma aromatica showed more suppressive effect on viability of A549, HeLa than the control group with density dependent manner, which was statistically significant. Curcuma aromatica induced apoptosis by decreasing the membrane potential of mitochondria in A549, HeLa. In the experiment of the revelation of genes related to apoptosis, the revelation of Bcl-2 decreased and the revelation of Bax increased in A549, HeLa treated with Curcuma aromatica with dose dependent manner. In the experiment of the revelation of protein related to apoptosis, the protein levels of Bcl-2 decreased and the protein levels of Bax increased in AS49, HeLa treated with Curcuma aromatica with dose dependent manner. Conclusions: From this study, we can infer that Curcuma aromatica has anti-tumor effect on lung cancer cells and uterine carcinoma cells but not on glioma cells and prostate cancer cells.

  • PDF

3-Deoxysappanchalcone Inhibits Cell Growth of Gefitinib-Resistant Lung Cancer Cells by Simultaneous Targeting of EGFR and MET Kinases

  • Jin-Young Lee;Seung-On Lee;Ah-Won Kwak;Seon-Bin Chae;Seung-Sik Cho;Goo Yoon;Ki-Taek Kim;Yung Hyun Choi;Mee-Hyun Lee;Sang Hoon Joo;Jin Woo Park;Jung-Hyun Shim
    • Biomolecules & Therapeutics
    • /
    • 제31권4호
    • /
    • pp.446-455
    • /
    • 2023
  • The mechanistic functions of 3-deoxysappanchalcone (3-DSC), a chalcone compound known to have many pharmacological effects on lung cancer, have not yet been elucidated. In this study, we identified the comprehensive anti-cancer mechanism of 3-DSC, which targets EGFR and MET kinase in drug-resistant lung cancer cells. 3-DSC directly targets both EGFR and MET, thereby inhibiting the growth of drug-resistant lung cancer cells. Mechanistically, 3-DSC induced cell cycle arrest by modulating cell cycle regulatory proteins, including cyclin B1, cdc2, and p27. In addition, concomitant EGFR downstream signaling proteins such as MET, AKT, and ERK were affected by 3-DSC and contributed to the inhibition of cancer cell growth. Furthermore, our results show that 3-DSC increased redox homeostasis disruption, ER stress, mitochondrial depolarization, and caspase activation in gefitinib-resistant lung cancer cells, thereby abrogating cancer cell growth. 3-DSC induced apoptotic cell death which is regulated by Mcl-1, Bax, Apaf-1, and PARP in gefitinib-resistant lung cancer cells. 3-DSC also initiated the activation of caspases, and the pan-caspase inhibitor, Z-VAD-FMK, abrogated 3-DSC induced-apoptosis in lung cancer cells. These data imply that 3-DSC mainly increased mitochondria-associated intrinsic apoptosis in lung cancer cells to reduce lung cancer cell growth. Overall, 3-DSC inhibited the growth of drug-resistant lung cancer cells by simultaneously targeting EGFR and MET, which exerted anti-cancer effects through cell cycle arrest, mitochondrial homeostasis collapse, and increased ROS generation, eventually triggering anti-cancer mechanisms. 3-DSC could potentially be used as an effective anti-cancer strategy to overcome EGFR and MET target drug-resistant lung cancer.