• 제목/요약/키워드: luminous efficiency-voltage

검색결과 129건 처리시간 0.032초

LCD 백라이트용 Xe계 플라즈마 평판 램프의 구동 전압 Pulse의 조건에 따른 방전 특성 연구 (Discharge Characteristics of Xe Plasma Flat Lamp for LCD Backlight According to Operating Voltage Pulse)

  • 권은미;김혁환;이원종
    • 한국재료학회지
    • /
    • 제13권4호
    • /
    • pp.271-278
    • /
    • 2003
  • Conventional backlight for liquid crystal display (LCD) uses mercury which leads to environmental pollution. In this study, characteristics of AC coplanar type mercury-free plasma flat lamp have been studied. Pollution-free Xe-He is adopted as a discharge gas system. Since the Xe gas has a lower efficiency in generating vacuum ultraviolet (VUV) than mercury, the improvement of luminance and luminous efficiency in the Xe gas system is very important. The electrode, dielectric, and phosphor layers constituting lamp are formed on the bottom glass by the screen printing method. The effects of pulse shape, on-time, and pulse frequency on the luminance and luminous efficiency have been examined. For Xe(5%)-He gas, the lamp exhibits higher efficiency with sharper pulse shape, higher peak voltage, and shorter pulse on-time (up to 2 $\mu\textrm{s}$). Higher efficiency and lower consumption of power were obtained at 30 kHz than at 60 kHz. The collision of ion to bottom electrodes is a dominant factor to raise the lamp temperature. Therefore the high voltage and low current discharge system is necessary for reduction of the lamp temperature as well as for enhancement of the luminous efficiency.

Effects of Buffer Layer in Organic Light-Emitting Diodes Using Poly(N-vinylcarbazole)

  • Chung, Dong-Hoe;Hong, Jin-Woong;Kim, Tae-Wan
    • 한국응용과학기술학회지
    • /
    • 제20권2호
    • /
    • pp.173-176
    • /
    • 2003
  • We have seen the effects of buffer layer in organic light-emitting diodes using poly(N-vinylcarbazole)(PVK). Polymer PVK buffer layer was made using static spin-casting method. Two device structures were made; one is ITO/TPD/Alq3/Al as a reference and the other is ITO/PVK/TPD/Alq3/Al to see the effects of buffer layer in organic light-emitting diodes. Current-voltage characteristics, luminance-voltage characteristics and luminous efficiency were measured with a variation of spin-casting speeds. We have obtained an improvement of luminous efficiency by a factor of two and half when the PVK buffer layer is used.

AC PDP의 새로운 고효율 전극구조 (New Sustain Electrode Structure for High Luminous Efficiency in AC PDP)

  • 박차수;최준영;최윤창;허정은;이영권;박정후
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권9호
    • /
    • pp.475-480
    • /
    • 2004
  • One of the most important issues in AC PDP is the improvement of luminous efficiency. One possible method is to develop new sustain electrode shape showing high luminous efficiency. In this study, a new electrode shapehas a bridge is proposed in order to solve this problem. The experimental results show that the test panel with the suggested new electrode shape shows high luminance efficiency by 35.35% and low sustain voltage by 17V compared with the conventional structure.

ZnS 완충층을 사용한 SrS : Ce, Cl 박막 EL 소자의 효율 (Luminous Efficiency of SrS:Ce, Cl EL Device with ZnS Buffer Layer)

  • 임영민;최광호;장보현
    • 한국광학회지
    • /
    • 제2권3호
    • /
    • pp.115-120
    • /
    • 1991
  • ZnS 완충층이 SrS : Ce, Cl 박막 EL cell의 발광휘도 및 효율에 미치는 영향을 조사하였다. ZnS 완충층을 사용한 cell과 사용하지 않은 cell의 구동전압은 각각 210V, 220V 이상이고 주파수 범위는 500 Hz-20kHz로 하였다. 측정범위 내에서 휘도는 주파수와 이동전하밀도의 곱에 비례하고, 한편 이동전하밀도는 주파수에 무관하고 구동전압에 비례한다. 결과적으로 발광효율은 주파수와 구동전압에 무관하다. 완충층을 사용하므로 활성층의 발광특성을 향상시킬 수 있으며, 발광효율은 완충층 유무에 따라 각각 0.12 lm/W, 0.06 lm/W 이다.

  • PDF

High luminous efficiency Mercury-free flat light source for LCD BLU

  • Lee, Ju-Kwang;Oh, Byung-Joo;Jung, Jae-Chul;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1161-1164
    • /
    • 2005
  • A Mercury-free, flat light source which shows high luminance and luminous efficiency simultaneously has been developed. An electrodeless, dielectric barrier discharge is used to generate the plasma using Ne-Xe mixture gas of relatively low gas pressure of a few tens torr in a 4.1 inch diagonal size of flat panel. The basic properties of the long gap glow discharge and its accompanying instabilities, which prevents us from having high luminous efficiency discharge have been analyzed. A new structure and optimized driving methods have been used to generate a glow discharge which shows a wide voltage margin of a few hundred volts. The luminous efficiency and luminance could be 110 lm/W at $1300\;cd/m^2$ and 50 lm/W at $5500\;cd/m^2$.

  • PDF

Short-gap과 Long-gap의 이중 방전 전극 구조를 갖는 AC형 플라즈마 표시기의 효율 향상에 대한 연구 (Study on Improving the luminous Efficiency of AC PDPs using the Dual Mode Discharge Electrode Structure Having Short-Gap and Long-Gap Discharge)

  • 신범재;김태준;이주광;황기웅
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권11호
    • /
    • pp.529-535
    • /
    • 2003
  • In this paper, we presents the characteristics of the new electrode structure in an AC Plasma Display Panel(PDP) that can generate dual mode discharges with a combination of short-gap and long-gap discharges. The experiment results show that the discharge voltage of the new electrode structure is mainly determined by short-gap discharge and the luminous efficiency is improved by 20% compared with the conventional electrode structure. The improvement of luminous efficiency is mainly caused by higher VUV generation and broader distribution from Ole ICCD camera measurements.

AC PDP에서 CLHS 구동 방법에 의한 ITO Gap에 따른 방전 특성 (The Characteristics of the Discharge According to ITO Gap by the CLHS Driving Method in AC PDP)

  • 신재화;최명규;김근수
    • 전기학회논문지
    • /
    • 제62권1호
    • /
    • pp.83-89
    • /
    • 2013
  • In order to reduce the power consumption in international standard IEC62087, the luminance efficiency should be improved at the low discharge load rather than at the high discharge load. Thus, this paper analysed the characteristics of the discharge at the panels with ITO Gap of $65{\mu}m$, $80{\mu}m$, and $100{\mu}m$ in 50-inch PDP with FHD resolution. It was well known that the long gap panel improves the luminance and the luminous efficiency. However, it is very difficult to drive the panel due to high driving voltage. When the normal driving method was applied at the panel with ITO gap of $100{\mu}m$, the phenomenon of the double peak was generated in the sustain period. We confirmed that main factor of the double peak is the self-erasing discharge. When the CLHS driving method was applied at the panel with ITO gap of $100{\mu}m$, the self-erasing discharge was improved in the sustain period. Also, the $V_S$ and $V_A$ minimum voltage of the CLHS driving method decreased about 9V and 12V compared with those of the normal driving method. Moreover, when the CLHS driving method was applied to the panel with ITO gap of $100{\mu}m$, the luminance and the luminous efficiency increased compared with those of the normal driving method. The luminance and the luminous efficiency greatly increased at the low discharge load. The less discharge load, the higher increase rate of the luminance and the luminous efficiency. Especially, the luminous efficiency at ITO gap of $100{\mu}m$ increased about 26.3% at the discharge load of 4% compared with that at ITO gap of $65{\mu}m$.

AC PDP의 전기광학적 특성에 미치는 동작 Gas Xex+Ne1-x의 영향 (The Effect of Working Gas Xex+Ne1-x on the Electro-optical Characteristics of AC PDP)

  • 박정후;유수복;이돈규;이해준;이호준;김재성
    • 전기학회논문지
    • /
    • 제56권1호
    • /
    • pp.142-146
    • /
    • 2007
  • Nowadays, itis inevitable trend to use high Xe gas contents for increase luminous efficiency and luminance in plasma display panel. However, the increase of Xe gas contents causes the driving voltage, although the brightness is increase. In this paper, we study the characteristics of electro optical according to Xe gas contents and gas pressure. Electro-optical characteristics were investigated by the discharge voltage, luminance and luminous efficacy measurements, respectively. With some increasing Xe gas contents and pressure, the electro-optical properties increased. However, the characteristics of electro-optical begin to be saturated, when too high increased Xe gas contents and pressure.

AC PDP의 전기광학적 특성과 동작 Gas $Xe_x+Ne_y+He_{1-y)$의 상관관계에 관한 연구 (A Study on the Relationships Between the Electrooptical Characteristics and Working Gas Xe+Ne+He)

  • 박정후;유수복;이해준;이호준;김재성;이돈규
    • 전기학회논문지
    • /
    • 제56권9호
    • /
    • pp.1619-1625
    • /
    • 2007
  • The gas mixture ratio of PDP discharges plays a very important role in the discharge characteristics of a plasma display panel. The increase of Xe contents results in the increases of luminance and luminous efficiency while it also results in the increase of the breakdown voltage. The addition of He gas increases the brightness and the luminous efficiency. Especially, the luminance and the luminous efficiency have a maximum value when the partial pressure of He is about 10% of the total pressure for a standard plasma display panel with Xe fraction of $10\sim30%$.

교류 구동 방법에 의한 유기전계발광소자 발광 특성의 모델 (Model of Organic Light Emitting Device Emission Characteristics with Alternating Current Driving Method)

  • 서정현;주성후
    • 한국재료학회지
    • /
    • 제31권10호
    • /
    • pp.586-591
    • /
    • 2021
  • This paper proposes a mathematical model that can calculate the luminescence characteristics driven by alternating current (AC) power using the current-voltage-luminance (I-V-L) properties of organic light emitting devices (OLED) driven by direct current power. Fluorescent OLEDs are manufactured to verify the model, and I-V-L characteristics driven by DC and AC are measured. The current efficiency of DC driven OLED can be divided into three sections. Region 1 is a section where the recombination efficiency increases as the carrier reaches the emission layer in proportion to the increase of the DC voltage. Region 2 is a section in which the maximum luminous efficiency is stably maintained. Region 3 is a section where the luminous efficiency decreases due to excess carriers. Therefore, the fitting equation is derived by dividing the current density and luminance of the DC driven OLED into three regions, and the current density and luminance of the AC driven OLED are calculated from the fitting equation. As a result, the measured and calculated values of the AC driving I-V-L characteristics show deviations of 4.7% for current density, 2.9 % for luminance, and 1.9 % for luminous efficiency.