• Title/Summary/Keyword: lubrication fluid control

Search Result 34, Processing Time 0.028 seconds

Angular Position Control of a Rotor with Electro-Rheological Clutch (전기 유변성 클러치를 이용한 회전관성체의 위치제어)

  • 고봉춘;심현해;김창호;김권희
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.203-211
    • /
    • 1998
  • ER clutch is a device using electro-rheological fluid which is one of so called intelligent materials. Power transmission behavior of an ER clutch can be controlled by electrical field applied tb the fluid. In this work, a new type of servomechanism is developed with two ER clutchs, driven by two electrical motors rotating in reverse directions. The concentric cylinder type ER clutch is operated by PID control. The system shows good angular position control characteristics with respect to sinusoidal and square inputs.

  • PDF

A Lubrication Performance Analysis of Mechanical Face Seals Using Galerkin Finite Element Method (갤러킨 유한요소해석법을 이용한 미케니컬 페이스 실의 윤활성능해석)

  • Choe, Byeong-Ryeol;Lee, An-Seong;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.916-922
    • /
    • 2001
  • A mechanical face seal is a tribo-element intended to control leakage of working fluid at the interface between a rotating shaft and its housing. Leakage of working fluid decreases drastically as the clearance of the mating seal faces gets smaller. But the very small seal clearance results in an increased reduction of seal life because of high wear and heat generation. Therefore, in the design of mechanical face seals a compromise between low leakage and acceptable seal life is important, and it presents a difficult and practical design problem. A fluid film or sealing dam geometry of the seal clearance affects seal lubrication performance very much, and thereby it is one of the main design considerations. In this study the Reynolds equation for the sealing dam of mechanical face seals is numerically analyzed, using the Galerkin finite element method, which is readily applied to various seal geometries. Film pressures of the sealing dam are analyzed, including the effects of the seal face coning and tilt. Then, lubrication performances of the seals, such as opening forces, restoring moments, leakage, and dynamic coefficients, are calculated, and they are compared to the results obtained by the narrow seal approximation.

Surface Texturing in Hydraulic Machine Components for Friction Reduction (Surface Texturing에 의한 유압부품의 마찰저감)

  • Park, Tae Jo;Kim, Min Gyu
    • Journal of Drive and Control
    • /
    • v.13 no.1
    • /
    • pp.27-33
    • /
    • 2016
  • In hydraulic machinery, the hydraulic fluid acts primarily as working fluid and secondarily as a lubricant. Hence, the viscous friction force acting on the sliding components should be reduced to improve the mechanical efficiency. It is now well known that the surface texturing is a useful method for friction reduction. In this study, using a commercial computational fluid dynamics (CFD) code, FLUENT, the lubrication characteristics of a surface textured slider bearing under high boundary pressure difference is studied. The streamlines, velocity profiles, pressure distributions, load capacity, friction force and leakage flowrate are highly affected by the film thickness ratio and the textured region. Partial texturing at the inlet region of the inclined slider bearing can reduce both friction force and leakage flowrate than in the untextured case. The present results can be used to improve the lubrication characteristics of hydraulic machinery.

Lubrication Characteristics of Surface Textured Hydraulic Machine Components (표면조직 가공한 유압부품면에서의 윤활특성)

  • Lee, J.O.;Park, T.J.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.26-31
    • /
    • 2012
  • Friction reduction between sliding hydraulic machine components is required to improve efficiency and reliability of hydraulic machineries. It is recently reported that surface texturing on sliding bearing surfaces can reduce the friction force highly. In this paper, numerical analysis is carried out to investigate the effect of dimple numbers and inlet boundary pressures on the lubrication characteristics of a parallel sliding bearing using a commercial computational fluid dynamics (CFD) code, FLUENT. The results show that the pressure distribution, load capacity, dimensionless friction force and leakage with dimple number and their locations, and inlet pressures. The overall lubrication characteristics are highly affected by dimple numbers and boundary pressure. The numerical method adopted and results can be used in design of efficient hydraulic machine components.

Optimum Hydraulic Oil Viscosity Based on Slipper Model Simulation for Swashplate Axial Piston Pumps/Motors

  • Kazama, Toshiharu
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.84-90
    • /
    • 2021
  • Viscosity of hydraulic oils decreases due to loss reduction and efficiency increase of fluid power systems. However, low viscosity is not always appropriate due to the induction of large leakage and small lubricity. Therefore, a detailed study on the optimum viscosity of hydraulic oils is necessary. In this study, based on the thermohydrodynamic lubrication theory, numerical simulation was conducted using the slipper model of swashplate-type axial piston pumps and motors. The viscosity grades' (VG) effects of oils on power losses are mainly discussed numerically in fluid film lubrication, including changes in temperature and viscosity. The simulation results reveal that the flow rate increases and the friction torque decreases as VG decreases. The film temperature and power loss were minimised for a specific oil with a VG. The minimum conditions regarding the temperature and loss were different and closed. Under various operating conditions, the film temperature and power loss were minimised, suggesting that an optimum hydraulic oil with a specific VG could be selected for given operating conditions of pressure and speed. Otherwise, a preferable operating condition must be established to determine a specific VG oil.

무한 소폭 전기유변 스퀴즈 필름 댐퍼의 해석

  • 정시영
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1994.06b
    • /
    • pp.19-29
    • /
    • 1994
  • Since Winslow (1) has reported an electro - theological (ER) effect which features remarkable and reversible changes in the properties of the fluid due to an imposed external electric field, numerous applications of ER fluids in mechanical devices, such as clutches, control valves, active dampers, and etc. have been proposed to improye dramatical ly their performances (2,3). When the external electric field is imposed to the ER fluid, it behaves as a Bingham fluid, displaying a field dependent yield shear stress which is widely variable. Without the electric field, the ER fluid has a reversible and constant viscosity so that it flows as a Newtonian fluid. Another salient feature of the ER fluid is that the time required for the variation is very short (< 0.001 sec) (4-6). These attractive.characteristics of the ER fluid provide the possibility of the appearance of new engineering technology , for instance, an active vibration control system. Recently, the application of the ER fluid to rotor-bearing systems has been also initiated.

  • PDF

Infinitesimal Fluid Injection Control System by using an Orifice and a Directional Control Valve (오리피스와 방향제어밸브를 이용한 미세유량 분사제어시스템)

  • Jeong, Eun-Seok;Oh, In-Ho;Lee, Ill-Yeong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.67-68
    • /
    • 2006
  • This study suggests a precision flow control system that enables fluid injection of a few grams at a time in a few ms time duration. The fluid injection system suggested here consists of a high pressure fluid pump, a 3 way 3 position directional control valve, an injector and an orifice. The orifice is located between the directional control valve and the injector. By supplying current signal to the directional control valve, the prescribed small amount of fluid can be supplied to a plant through the injector. The control robustness of the suggested system against the disturbances like the pressure change in a plant and the viscosity variation of the injected fluid is secured easily by using an orifice with very small inside diameter and setting the supply pressure with comparatively high value. The control performances of the suggested system are verified by numerical simulations and experiments. The outcomes of this research could be applied to the common rail injection control of lubrication oil for large size marine diesel engines, and other industrial plants.

  • PDF

Development of a mathematic model for a variable displacement vane pump for engine oil (엔진오일용 가변 베인펌프의 수학적 모델 개발)

  • Truong, D.Q.;Ahn, K.K.;Yoon, J.I.;Lee, J.S.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.42-51
    • /
    • 2012
  • Variable displacement vane-type oil pumps represent one of the most innovative pump types for industrial applications, especially for engine lubrication systems. This paper deals with a modeling method for theoretical flow rate investigation of a typical variable displacement vane-type oil pump. This theoretical model is based on the pump geometric design and dynamic analyses. It can be considered as mandatory steps for a deeper understanding of the pump operation as well as for effectively implementing the pump control mechanisms to satisfy the urgent demands of engine lubrication systems. The developed pump model is finally illustrated by numerical simulations.