• Title/Summary/Keyword: lrp

Search Result 72, Processing Time 0.028 seconds

Current Status of Research in Wnt Signal Transduction (Wnt 신호 전달 연구의 최신 지견)

  • Kim, Wan-Tae;Cha, Bok-Sik;Jho, Eek-Hoon
    • Development and Reproduction
    • /
    • v.11 no.3
    • /
    • pp.141-153
    • /
    • 2007
  • The Wnt signaling pathway regulates cell proliferation and differentiation during development of multicellular organisms and plays pivotal roles in the maintenance of homeostasis in adult tissues. Therefore misregulation of Wnt signaling could be a pathogenesis of diverse human diseases such as cancers. Recently, the list of diseases that may be linked to the misregulation of Wnt signaling has exploded and more people are getting interested in the way of controlling Wnt signaling. There are a lot of review papers, however, since most of them have focused on specific issues for experts in Wnt signaling it may be difficult for new comers to understand the overall background and current status of Wnt signaling. In this review, we present data and interpretations for the overall processes of Wnt signal transduction to understand the past and current status of Wnt signaling.

  • PDF

Restoration of the adipogenic gene expression by naringenin and naringin in 3T3-L1 adipocytes

  • Dayarathne, Lakshi A.;Ranaweera, Sachithra S.;Natraj, Premkumar;Rajan, Priyanka;Lee, Young Jae;Han, Chang-Hoon
    • Journal of Veterinary Science
    • /
    • v.22 no.4
    • /
    • pp.55.1-55.17
    • /
    • 2021
  • Background: Naringenin and its glycoside naringin are well known citrus flavonoids with several therapeutic benefits. Although the anti-adipogenic effects of naringenin and naringin have been reported previously, the detailed mechanism underlying their anti-adipogenesis effects is poorly understood. Objectives: This study examined the anti-adipogenic effects of naringenin and naringin by determining differential gene expression patterns in these flavonoids-treated 3T3-L1 adipocytes. Methods: Lipid accumulation and triglyceride (TG) content were determined by Oil red O staining and TG assay. Glucose uptake was measured using a 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose fluorescent d-glucose analog. The phosphorylation levels of AMP-activated protein kinase (AMPK) and acetyl Co-A carboxylase (ACC) were observed via Western blot analysis. Differential gene expressions in 3T3-L1 adipocytes were evaluated via RNA sequencing analysis. Results: Naringenin and naringin inhibited both lipid accumulation and TG content, increased phosphorylation levels of both AMPK and ACC and decreased the expression level of 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR) in 3T3-L1 adipocytes. RNA sequencing analysis revealed that 32 up-regulated (> 2-fold) and 17 down-regulated (< 0.6-fold) genes related to lipid metabolism, including Acaca, Fasn, Scd1, Mogat1, Dgat, Lipin1, Cpt1a, and Lepr, were normalized to the control level in naringenin-treated adipocytes. In addition, 25 up-regulated (> 2-fold) and 25 down-regulated (< 0.6-fold) genes related to lipid metabolism, including Acaca, Fasn, Fabp5, Scd1, Srebf1, Hmgcs1, Cpt1c, Lepr, and Lrp1, were normalized to the control level by naringin. Conclusions: The results indicate that naringenin and naringin have anti-adipogenic potentials that are achieved by normalizing the expression levels of lipid metabolism-related genes that were perturbed in differentiated 3T3-L1 cells.

A Study on Development and Application of New Borehole Roughness and Verticality Measurement System (BKS-LRFS) for Drilled Shafts (현장타설말뚝의 굴착공 벽면거칠기 및 연직도 측정 시스템(BKS-LRPS)의 개발 및 적용성에 관한 연구)

  • Park, Bong-Geun;Nam, Moon-S.;Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.55-68
    • /
    • 2009
  • A new borehole roughness and verticality measurement system (BKS-LRPS) for rock socketed drilled shafts were developed and verified its field application. The stability of BKS-LRPS was verified for several field conditions, which included the effect of measuring unit shaking, the application of water/air calibration factors, and the resistance of high water pressure inside piles. Also, effective measurement distances for various conditions of turbidity were defined in the field by measuring borehole roughness and vertical alignment for 6 drilled shafts. Vertical alignments for all drilled shafts could be measured by BKS-LRPS. However, borehole roughness was not able to be measured due to high turbidity caused by RCD drilling processing. Based on the BKS-LRPS field verification, BKS-LRPS is the first borehole roughness and verticality measurement system applying both in the water and air.

Calibration of Borehole Roughness Measurement System for Large Diameter Drilled Shafts in Water (수중에서 적용가능한 대구경 현장타설말뚝의 굴착공 벽면거칠기 측정장치의 보정에 관한 연구)

  • Park, Bong-Geun;Nam, Moon-S.;Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.8
    • /
    • pp.5-21
    • /
    • 2009
  • Based on recent studies on rock socketed drilled shafts, it was found that the side resistance of rock socketed drilled shafts is affected by unconfined compressive strength of rock, socket roughness, rock types and joints, and initial normal stress. Especially, the socket roughness is affected by rock types and joints, drilling methods, and diameters. Since existing roughness measurement systems could be conducted only in the air, a new roughness measurement system, which can measure rock socket roughness in the air and also in the water, is needed. However, the development of new roughness measurement system fur civil engineers has been faced with difficulties of electrical applications. In this study, the laboratory verification system far BKS-LRPS (Backyoung-KyungSung Laser Roughness Profiling System) was developed, which can be applied both in the water and air. Based on the laboratory verification, it was found that the improved BKS-LRPS could define effective measurement distances for the conditions reflecting the apparatus and in-situ situations.

Gene Expression Profile Associated with the Differentiation of Osteoblasts from Human Mesenchymal Stem Cells (인간 중간엽 줄기세포로부터 골아세포로의 분화시 관찰되는 유전자 발현 분석)

  • Kim Yeo-Kyeoung;Kim Hee-Nam;Lee Il-Kwon;Park Kyeong-Soo;Yang Deok-Hwan;Cho Sang-Hee;Lee Je-Jung;Chung Ik-Joo;Kim Soon-Hag;Kim Hyeoung-Joon
    • Journal of Life Science
    • /
    • v.16 no.2 s.75
    • /
    • pp.231-239
    • /
    • 2006
  • Human mesenchymal stem cells (hMSCs) in bone marrow (BM) can be induced to differentiate into a variety of mesenchymal tissues, including adipocytes, osteoblasts and chondroblasts, under the influence of certain growth or environmental factors. In this study, we analyzed the differentiation process and the associated gene expression profiles inherent to the process by which hMSCs differentiate into osteoblasts. We conducted a comparison of gene expression profiles of the normal human BM MSCs, using human 8K cDNA microarray, incubated in media containing either a combination of $\beta$-glycerol phosphate, L-ascorbic acid, and dexamethasone, or in medium lacking these osteogenic supplements. During the osteoblastic differentiation process, 36 genes were determined to be up-regulated, and 59 genes were shown to be down-regulated. Osteoprotegerin, LRP5, and metallothionein 2A, all of which are associated with the osteogenetic process, were up-regulated, and genes associated with the differentiation of MSCs into other lineages, including muscle, adipose tissue and vascular structure were down-regulated. The set of differentially expressed genes reported in this work should contribute to our current understanding of the processes inherent to the differentiation of MSCs into osteoblasts.

Association of β-Catenin with Fat Accumulation in 3T3-L1 Adipocytes and Human Population (β-catenin 유전자의 3T3-L1 지방세포 및 인체에서의 지방축적 연관성 연구)

  • Bae, Sung-Min;Lee, Hae-Yong;Chae, Soo-Ahn;Oh, Dong-Jin;Park, Suk-Won;Yoon, Yoo-Sik
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1301-1309
    • /
    • 2011
  • The major function of adipocytes is to store fat in the form of triglycerides. One of the signaling pathways known to affect adipogenesis, i.e. fat formation, is the WNT/${\beta}$-catenin pathway which inhibits the expression and activity of key regulators of adipogenesis. The purpose of this research is to find genes among the WNT/${\beta}$-catenin pathway which regulate adipogenesis by using small interfering (si) RNA and to find the association of single nucleotide polymorphisms (SNPs) of the gene with serum triglyceride levels in the human population. To elucidate the effects of ${\beta}$-catenin siRNA on adipogenesis key factors, PPAR${\gamma}$ and C/EBP${\alpha}$, we performed real-time PCR and western blotting experiments for the analyses of mRNA and protein levels. It was found that the siRNA-mediated knockdown of ${\beta}$-catenin upregulates adipogenesis key factors. However, upstream regulators of the WNT/${\beta}$-catenin pathway, such as DVL2 and LRP6, had no significant effects compared to ${\beta}$-catenin. These results indicate that ${\beta}$-catenin is a candidate gene for human fat accumulation. In general, serum triglyceride level is a good indicator of fat accumulation in humans. According to statistical analyses of the association between serum triglyceride level and SNPs of ${\beta}$-catenin, -10,288 C>T SNP (rs7630377) in the promoter region was significantly associated with serum triglyceride levels (p<0.05) in 290 Korean subjects. On the other hand, serum cholesterol levels were not significantly associated with SNPs of the ${\beta}$-catenin gene. The results of this study showed that ${\beta}$-catenin is associated with fat accumulation both in vitro and in the human population.

Beyond Clot Dissolution; Role of Tissue Plasminogen Activator in Central Nervous System

  • Kim, Ji-Woon;Lee, Soon-Young;Joo, So-Hyun;Song, Mi-Ryoung;Shin, Chan-Young
    • Biomolecules & Therapeutics
    • /
    • v.15 no.1
    • /
    • pp.16-26
    • /
    • 2007
  • Tissue plasminogen activator (tPA) is a serine protease catalyzing the proteolytic conversion of plasminogen into plasmin, which is involved in thrombolysis. During last two decades, the role of tPA in brain physiology and pathology has been extensively investigated. tPA is expressed in brain regions such as cortex, hippocampus, amygdala and cerebellum, and major neural cell types such as neuron, astrocyte, microglia and endothelial cells express tPA in basal status. After strong neural stimulation such as seizure, tPA behaves as an immediate early gene increasing the expression level within an hour. Neural activity and/or postsynaptic stimulation increased the release of tPA from axonal terminal and presumably from dendritic compartment. Neuronal tPA regulates plastic changes in neuronal function and structure mediating key neurologic processes such as visual cortex plasticity, seizure spreading, cerebellar motor learning, long term potentiation and addictive or withdrawal behavior after morphine discontinuance. In addition to these physiological roles, tPA mediates excitotoxicity leading to the neurodegeneration in several pathological conditions including ischemic stroke. Increasing amount of evidence also suggest the role of tPA in neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis even though beneficial effects was also reported in case of Alzheimer's disease based on the observation of tPA-induced degradation of $A{\beta}$ aggregates. Target proteins of tPA action include extracellular matrix protein laminin, proteoglycans and NMDA receptor. In addition, several receptors (or binding partners) for tPA has been reported such as low-density lipoprotein receptor-related protein (LRP) and annexin II, even though intracellular signaling mechanism underlying tPA action is not clear yet. Interestingly, the action of tPA comprises both proteolytic and non-proteolytic mechanism. In case of microglial activation, tPA showed non-proteolytic cytokine-like function. The search for exact target proteins and receptor molecules for tPA along with the identification of the mechanism regulating tPA expression and release in the nervous system will enable us to better understand several key neurological processes like teaming and memory as well as to obtain therapeutic tools against neurodegenerative diseases.

Comparative Genomic and Genetic Functional Analysis of Industrial L-Leucine- and L-Valine-Producing Corynebacterium glutamicum Strains

  • Ma, Yuechao;Chen, Qixin;Cui, Yi;Du, Lihong;Shi, Tuo;Xu, Qingyang;Ma, Qian;Xie, Xixian;Chen, Ning
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1916-1927
    • /
    • 2018
  • Corynebacterium glutamicum is an excellent platform for the production of amino acids, and is widely used in the fermentation industry. Most industrial strains are traditionally obtained by repeated processes of random mutation and selection, but the genotype of these strains is often unclear owing to the absence of genomic information. As such, it is difficult to improve the growth and amino acid production of these strains via metabolic engineering. In this study, we generated a complete genome map of an industrial L-valine-producing strain, C. glutamicum XV. In order to establish the relationship between genotypes and physiological characteristics, a comparative genomic analysis was performed to explore the core genome, structural variations, and gene mutations referring to an industrial L-leucine-producing strain, C. glutamicum CP, and the widely used C. glutamicum ATCC 13032. The results indicate that a 36,349 bp repeat sequence in the CP genome contained an additional copy each of lrp and brnFE genes, which benefited the export of L-leucine. However, in XV, the kgd and panB genes were disrupted by nucleotide insertion, which increase the availability of precursors to synthesize L-valine. Moreover, the specific amino acid substitutions in key enzymes increased their activities. Additionally, a novel strategy is proposed to remodel central carbon metabolism and reduce pyruvate consumption without having a negative impact on cell growth by introducing the CP-derived mutant $H^+$/citrate symporter. These results further our understanding regarding the metabolic networks in these strains and help to elucidate the influence of different genotypes on these processes.

Levels of Supplementation for Grazing Beef Heifers

  • Cabral, Carla Heloisa Avelino;Paulino, Mario Fonseca;Detmann, Edenio;de Campos Valadares Filho, Sebastiao;de Barros, Livia Vieira;Valente, Eriton Egidio Lisboa;de Oliveira Bauer, Maristela;Cabral, Carlos Eduardo Avelino
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.6
    • /
    • pp.806-817
    • /
    • 2014
  • The objective of this experiment was to evaluate the effect of providing different levels of a supplement on the nutritional characteristics and productive performance of heifers on pasture during the rainy-dry transition and dry season in Brazil or tropical area. Thirty crossbred heifers with predominance of Zebu breed were used in a completely randomized experimental design. Treatments consisted of a mineral supplement and 0.5, 1.0, 1.5, or 2.0 kg/animal/d of a protein supplement containing 300 g crude protein (CP)/kg of dry matter (DM). In the rainy-dry transition season there was quadratic effect of the protein supplementation (p<0.10) on daily weight gain (DWG). A linear relationship (p<0.10) was found between increasing supplement intake and intakes of DM, organic matter (OM), crude protein (CP), ether extract (EE), non fibrous carbohydrates (NFC) and total digestible nutrients (TDN). Coefficients of apparent digestibility of CP, EE, and NFC increased linearly (p<0.10) with increasing supplement levels, but there was no effect on the DM apparent digestibility (p>0.10); the microbial efficiency (g CPmic/kg TDN) and the relationship of microbial nitrogen flow with nitrogen intake (g/g nitrogen intake) were negative linear profiles. In the dry season, the descriptive pattern least squares means showed a trend of stabilization of DWG from the supply of 0.98 kg of protein supplement; the intakes of DM, OM, CP, EE, NFC, and TDN showed increasing linear relationship (p<0.10) with protein supplement levels; the means of apparent digestibility coefficients of the different dietary fractions presented a linear-response-plateau (LRP); the microbial nitrogen flow (g/d) showed positive linear profile (p<0.10) for supplementation levels. It is concluded that supplementation improves the productive performance of grazing heifers and that 1.0 kg/d of supplement per animal gives the maximum increment of weight gain.

Mechanistic Analysis of Taxol-induced Multidrug Resistance in an Ovarian Cancer Cell Line

  • Wang, Ning-Ning;Zhao, Li-Jun;Wu, Li-Nan;He, Ming-Feng;Qu, Jun-Wei;Zhao, Yi-Bing;Zhao, Wan-Zhou;Li, Jie-Shou;Wang, Jin-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.4983-4988
    • /
    • 2013
  • Objectives: To establish a taxol-resistant cell line of human ovarian carcinoma (A2780/Taxol) and investigate its biological features. Methods: The drug-resistant cell line (A2780/Taxol) was established by continuous stepwise selection with increasing concentrations of Taxol. Cell morphology was assessed by microscopy and growth curves were generated with in vitro and in vivo tumor xenograft models. With rhodamine123 (Rh123) assays, cell cycle distribution and the apoptotic rate were analyzed by flow cytometry (FCM). Drug resistance-related and signal associated proteins, including P-gp, MRPs, caveolin-1, PKC-${\alpha}$, Akt, ERK1/2, were detected by Western blotting. Results: A2780/Taxol cells were established with stable resistance to taxol. The drug resistance index (RI) was 430.7. Cross-resistance to other drugs was also shown, but there was no significant change to radioresistance. Compared with parental cells, A2780/Taxol cells were significantly heteromorphous, with a significant delay in population doubling time and reduced uptake of Rh123 (p<0.01). In vivo, tumor take by A2780 cells was 80%, and tumor volume increased gradually. In contrast, with A2780/Taxol cells in xenograft models there was no tumor development. FCM analysis revealed that A2780/Taxol cells had a higher percentage of G0/G1 and lower S phase, but no changes of G2 phase and the apoptosis rate. Expression of P-gp, MRP1, MRP2, BCRP, LRP, caveolin-1, PKC-${\alpha}$, Phospho-ERK1/2 and Phospho-JNK protein was significantly up-regulated, while Akt and p38 MARK protein expression was not changed in A2780/Taxol cells. Conclusion: The A2780/Taxol cell line is an ideal model to investigate the mechanism of muti-drug resistance related to overexpression of drug-resistance associated proteins and activation of the PKC-${\alpha}/ERK$ (JNK) signaling pathway.