• Title/Summary/Keyword: loxodromic elements

Search Result 2, Processing Time 0.017 seconds

INVOLUTIONS AND THE FRICKE SPACES OF SURFACES WITH BOUNDARY

  • Kim, Hong Chan
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.403-426
    • /
    • 2014
  • The purpose of this paper is to find expressions of the Fricke spaces of some basic surfaces which are a three-holed sphere ${\sum}$(0, 3), a one-holed torus ${\sum}$(1, 1), and a four-holed sphere ${\sum}$(0, 4). For this goal, we define the involutions corresponding to oriented axes of loxodromic elements and an inner product <,> which gives the information about locations of axes of loxodromic elements. The signs of traces of holonomy elements, which are calculated by lifting a representation from PSL(2, $\mathbb{C}$) to SL(2, $\mathbb{C}$), play a very important role in determining the discreteness of holonomy groups.