• Title/Summary/Keyword: lower critical field

Search Result 145, Processing Time 0.022 seconds

Aerial Working Platform Training Simulator (고소작업대 조종훈련용 시뮬레이터)

  • Ki, Jae-Sug
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.4
    • /
    • pp.57-62
    • /
    • 2007
  • Aerial working platform is recently used broadly in heavy industry and construction field and also the utilization of it is growing. However, the raise of critical incident caused by unskilled operator is increased gradually. To reduce and prevent such incident, the training for operating is essential. It's not easy to cover the requirements for the training with real platform because of the high price of it, safety and weather condition. This paper proposes a simulator for the training based on virtual reality to give the training safely regardless to the weather condition and the simulator is deliverable in lower price than real one. The simulator proposed in this paper is available to be set according to the level of trainee's skill managing and be also applied for the design of general heavy equipment training simulator.

Fabrication of a BSCCO Magnet and its Operating Characteristics of Current Compensation in Persistent Current Mode (BSCCO Magnet 제작 및 영구전류모드에서의 전류 보상 운전 특성)

  • Jo, Hyun-Chul;Chang, Ki-Sung;Jang, Jae-Young;Kim, Hyung-Jun;Chung, Yoon-Do;Yoon, Yong-Soo;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.56-60
    • /
    • 2010
  • Recently, many researches have been carried out for a high temperature superconducting (HTS) magnet which is advantageous in high critical current density and critical temperature. In HTS magnet, however, critical current is decreased by perpendicular magnetic field and persistent current is hard to maintain due to a low index value and high joint resistance compared with low temperature superconducting (LTS) magnet. In this paper, the HTS magnet using BSCCO wire was simulated through finite element method (FEM) and manufactured. we experimentally investigated operating characteristics of the compensating mode of the HTS magnet for current decay and made a comparison between persistent current mode and compensating mode. A feedback control unit was used to sustain current within specified ranges with defined upper and lower limits.

AC transport current loss analysis for a face-to-face stack of superconducting tapes

  • Yoo, Jaeun;Youm, Dojun;Oh, SangSoo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.34-38
    • /
    • 2013
  • AC Losses for face to face stacks of four identical coated conductors (CCs) were numerically calculated using the H-formulation combined with the E-J power law and the Kim model. The motive sample was the face to face stack of four 2 mm-wide CC tapes with 2 ${\mu}m$ thick superconducting layer of which the critical current density, $J_c$, was $2.16{\times}10^6A/cm^2$ on IBAD-MgO template, which was suggested for the mitigation of ac loss as a round shaped wire by Korea Electrotechnology Research Institute. For the calculation the cross section of the stack was simply modeled as vertically aligned 4 rectangles of superconducting (SC) layers with $E=E_o(J(x,y,t)/J_c(B))^n$ in x-y plane where $E_o$ was $10^{-6}$ V/cm, $J_c$(B) was the field dependence of current density and n was 21. The field dependence of the critical current of the sample measured in four-probe method was employed for $J_c$(B) in the equation. The model was implemented in the finite element method program by commercial software. The ac loss properties for the stacks were compared with those of single 4 cm-wide SC layers with the same critical current density or the same critical current. The constraint for the simulation was imposed in two different ways that the total current of the stack obtained by integrating J(x,y,t) over the cross sections was the same as that of the applied transport current: one is that one fourth of the external current was enforced to flow through each SC. In this case, the ac loss values for the stacks were lower than those of single wide SC layer. This mitigation of the loss is attributed to the reduction of the normal component of the magnetic field near the SC layers due to the strong expulsion of the magnetic field by the enforced transport current. On the contrary, for the other case of no such enforcement, the ac loss values were greater than those of single 4cm-wide SC layer and. In this case, the phase difference of the current flowing through the inner and the outer SC layers of the stack was observed as the transport current was increased, which was a cause of the abrupt increase of ac loss for higher transport current.

INTRINSIC BRIGHTNESS TEMPERATURE OF COMPACT RADIO SOURCES AT 86GHZ

  • Lee, Sang-Sung
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.6
    • /
    • pp.243-251
    • /
    • 2013
  • We present results on the intrinsic brightness temperature of a sample of compact radio sources observed at 86 GHz using the Global Millimeter VLBI Array. We use the observed brightness temperatures at 86 GHz and the observed superluminal motions at 15 GHz for the sample in order to constrain the characteristic intrinsic brightness temperature of the sample. With a statistical method for studying the intrinsic brightness temperatures of innermost jet cores of compact radio sources, assuming that all sources have the same intrinsic brightness temperature and the viewing angles of their jets are around the critical value for the maximal apparent speed, we find that sources in the sample have a characteristic intrinsic brightness temperature, $T_0=4.8^{+2.6}_{-1.5}{\times}10^9K$, which is lower than the equipartition temperature for the condition that the particle energy equals to the magnetic field energy. Our results suggest that the VLBI cores seen at 86 GHz may be representing a jet region where the magnetic field energy dominates the total energy in the jet.

Origin of High Critical Current density in $MgB_2$ thin films

  • Kang, W.N.;Kim, Hyeong-Jin;Park, Eun-Mi;Kim, Mun-Seong;Kim, Kijoon H. P.
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.135-139
    • /
    • 2002
  • We have fabricated high-quality c-axis-oriented $MgB_2$ thin films by using a pulsed laser deposition technique. The thin films grown on (1 1 0 2) $Al_2$$O_3$ substrates show an onset transition temperature of 39.2 K with a sharp transition width of ~0.15 K. X-ray diffraction patterns indicate a c-axis-oriented crystal structure perpendicular to the substrate surface. We observed high critical current densities ($J_{c}$) of ~ 16 $MA/\textrm{cm}^2$ at 15 K and under self-field, which is comparable to or exceeds those of cuprate high-temperature superconductors. The extrapolation $J_{c}$ at 5 K was estimated to be ~ 40 MA/$\textrm{cm}^2$, which is the highest record for $MgB_2$ compounds. At a magnetic field of 5 T, the $J_{c}$ of~ 0.1 $MA/\textrm{cm}^2$ was detected at 15 K, suggesting that this compound is very promising candidate for the practical applications at high temperature with lower power consumption. As a possible explanation for the high current-carving capability, the vortex-glass phase will be discussed.d.d.d.

  • PDF

Importance of PET/CT Scan Use in Planning Radiation Therapy for Lymphoma

  • Milana, Mitric-Askovic;Marko, Erak;Miroslav, Latinovic;Tihomir, Dugandzija
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.2051-2054
    • /
    • 2015
  • Background: Radiation therapy is a key part of the combined modality treatment for Hodgkin's lymphoma (HL) and non-Hodgkin's lymphoma (NHL), which can achieve locoregional control of disease. The 3D-conformal radiation oncology can be extended-field (EFRT), involved-field (IFRT) and involved node (INRT). New techniques have resulted in a smaller radiation field and lower dose for critical organs such as lung heart and breast. Materials and Methods: In our research, we made a virtual simulation for one patient who was treated in four different radiotherapeutic techniques: mantle field (MFRT), EFRT, IFRT and INRT. After delineatiion we compared dose-volume histograms for each technique. The fusion of CT for planning radiotherapy with the initial PET/CT was made using Softver Xio 4.6 in the Focal program. The dose for all four techniques was 36Gy. Results: Our results support the use of PET/CT in radiation therapy planning. With IFRT and INRT, the burden on the organs at risk is less than with MFRT and EFRT. On the other hand, the dose distribution in the target volume is much better with the latter. Conclusions: The aim of modern radiotherapy of HL and NHL is to reduce the intensity of treatment and therefore PET/CT should be used to reduce and not increase the amount of tissue receiving radiation.

Tall Buildings as Urban Habitats: A Quantitative Approach for Measuring Positive Social Impacts of Tall Buildings' Lower Public Space

  • Zhou, Xihui;Ye, Yu;Wang, Zhendong
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.1
    • /
    • pp.57-69
    • /
    • 2019
  • After decades of high-speed development, designing tall buildings as critical components of urban habitat, rather than simply standing aloof from their environments, has become an important concern in many Asian cities. Nevertheless, the lack of quantitative understanding cannot support efficient architectural design or urban renewal that targets better place-making. This study attempts to fill the gap by providing a typological approach for measuring the social impact of tall buildings' ground conditions: that is, public space, podiums, and interfaces. The central business districts (CBD) of three Asian cities, Shanghai, Hong Kong, and Singapore, were selected as cases. Typical patterns and categories of lower-level public spaces among the three CBDs were abstracted via typological analyses and field study. The following evaluation is achieved through the analytic hierarchy process (AHP). This quantified approach helps to provide a visualization of high or low positive social impacts of tall buildings' lower-level public spaces among the three cases. This study also helps to suggest a design code for tall buildings aimed at a more human-oriented urban habitat.

Determination of seismic hazard and soil response of a critical region in Turkey considering far-field and near-field earthquake effect

  • Sonmezer, Yetis Bulent;Celiker, Murat
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.131-146
    • /
    • 2020
  • Evaluation of earthquake impacts in settlements with a high risk of earthquake occurrence is important for the determination of site-specific dynamic soil parameters and earthquake-resistant structural planning. In this study, dynamic soil properties of Karliova (Bingol) city center, located near to the intersection point of the North Anatolian Fault Zone and the East Anatolian Fault Zone and therefore having a high earthquake risk, were investigated by one-dimensional equivalent linear site response analysis. From ground response analyses, peak ground acceleration, predominant site period, 0.2-sec and 1-sec spectral accelerations and soil amplification maps of the study area were obtained for both near-field and far-field earthquake effects. The average acceleration spectrum obtained from analysis, for a near-field earthquake scenario, was found to exceed the design spectra of the Turkish Earthquake Code and Eurocode 8. Yet, the average acceleration spectrum was found to remain below the respective design spectra of the two codes for the far-field earthquake scenario. According to both near- and far-field earthquake scenarios in the study area, the low-rise buildings with low modal vibration durations are expected to be exposed to high spectral acceleration values and high-rise buildings with high modal vibration durations will be exposed to lower spectral accelerations. While high amplification ratios are observed in the north of the study area for the near-distance earthquake scenario, high amplification ratios are observed in the south of the study area for the long-distance earthquake scenario.

Study on the Fringe Field Switching (FFS) Mode with the Positive Dielectric Anisotropy for the Fast Response Time (유전율 이방성이 양인 액정을 이용한 고속응답용 FFS 모드)

  • 김미숙;김향율;송성훈;양석만;이성규;임영진;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.754-759
    • /
    • 2004
  • We have studied the fringe field switching (FFS) mode with the positive dielectric anisotropy for the fast response time. The factors such as the physical properties of the LC, the cell gap, and the rubbing angle were critical for the fast response time of the FFS mode. The response time became 10 ms faster when the rotational viscosity of the new LC is 20 mPa.s lower than the conventional LC. When the cell gap changed from 3.6 ${\mu}{\textrm}{m}$ to 3.0 ${\mu}{\textrm}{m}$, it was possible to achieve the total response time and response times associated with grey-to-grey transitions under 16 ms. And the response times including grey-to-grey transitions become fast as the rubbing angle decreases.

Residual Characteristics of Lufenuron in Crown Daisy and Chamnamul for Establishing Pre-Harvest Residue Limit (쑥갓 및 참나물 중 Lufenuron의 생산단계 잔류허용기준 설정을 위한 잔류 특성 연구)

  • A-Yeon Oh;Sun-Woo Ban;Hee-Ra Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.21-27
    • /
    • 2023
  • Pre-harvest residue limits (PHRLs) have been proposed as criteria for a proactive role to exceed the maximum residue limit (MRL) of pesticides in agricultural products at harvest. However, PHRL numbers are significantly less than those of established MRLs. This study was performed to determine the dissipation constants and residual concentrations of lufenuron after application on crown daisy and chamnamul under green house conditions. Two residue field trials for each crown daisy and chamnamul were selected to consider a different geographical site at least 20 km far from one another. The pesticide was treated according to critical GAP. After samples were sprayed with lufenuron, they were collected at 0, 1, 3, 5, 7, 10, and 14 days and analyzed using HPLC-DAD. The mean recoveries of crown daisy and chamnamul were within the range of 70-120% with below 20% coefficient variation, which is within the acceptable limits specified by the manual of pre-harvest residue study for pesticides (MFDS, 2014). The biological half-lives in field I and field II were 7.0 and 4.6 days for crown daisy and 2.7 and 2.8 days for chamnamul, respectively. The lower bounds of 95% confidence intervals of dissipation rate constants of lufenuron in crown daisy were determined to be 0.0692 and 0.1298 for field I and field II, respectively, and in chamnamul were 0.2067 for both field I and field II. After applying lufenuron 5% EC, the lufenuron residues on crown daisy and chamnamul at the pre-harvest intervals (14 days for crown daisy and 7 days for chamnamul) were below the safe levels. The dissipation rates of lufenuron in crown daisy and chamnamul were evaluated for similarities with leafy vegetables based on a 95% confidence interval.