• Title/Summary/Keyword: low-temperature fabrication

Search Result 731, Processing Time 0.028 seconds

Growth of ZnO thin films by MOCVD using the buffer layers grown at high temperature (고온 버퍼층을 이용한 ZnO 박막의 MOCVD 성장)

  • Kim, Dong-Chan;Kong, Bo-Hyun;Cho, Hyung-Koun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.108-109
    • /
    • 2006
  • ZnO semiconductor has a wide band gap of 3.37 eV and a large exciton binding energy of 60 meV, and displays excellent sensing and optical properties. In particular, ZnO based 1D nanowires and nanorods have received intensive attention because of their potential applications in various fields. We grew ZnO buffer layers prior to the growth of ZnO nanorods for the fabrication of the vertically well-aligned ZnO nanorods without any catalysts. The ZnO nanorods were grown on Si (111) substrates by vertical MOCVD. The ZnO buffer layers were grown with various thicknesses at $400^{\circ}C$ and their effect on the formation of ZnO nanorods at $300^{\circ}C$ was evaluated by FESEM, XRD, and PL. The synthesized ZnO nanorods on the ZnO film show a high quality, a large-scale uniformity, and a vertical alignment along the [0001]ZnO compared to those on the Si substrates showing the randomly inclined ZnO nanorods. For sample using ZnO buffer layer, 1D ZnO nanorods with diameters of 150-200 nm were successively fabricated at very low growth temperature, while for sample without ZnO buffer the ZnO films with rough surface were grown.

  • PDF

Fabrication of a BSCCO Magnet and its Operating Characteristics of Current Compensation in Persistent Current Mode (BSCCO Magnet 제작 및 영구전류모드에서의 전류 보상 운전 특성)

  • Jo, Hyun-Chul;Chang, Ki-Sung;Jang, Jae-Young;Kim, Hyung-Jun;Chung, Yoon-Do;Yoon, Yong-Soo;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.56-60
    • /
    • 2010
  • Recently, many researches have been carried out for a high temperature superconducting (HTS) magnet which is advantageous in high critical current density and critical temperature. In HTS magnet, however, critical current is decreased by perpendicular magnetic field and persistent current is hard to maintain due to a low index value and high joint resistance compared with low temperature superconducting (LTS) magnet. In this paper, the HTS magnet using BSCCO wire was simulated through finite element method (FEM) and manufactured. we experimentally investigated operating characteristics of the compensating mode of the HTS magnet for current decay and made a comparison between persistent current mode and compensating mode. A feedback control unit was used to sustain current within specified ranges with defined upper and lower limits.

Fabrication of Organic Thin-Film Transistor Using Vapor Deposition Polymerization Method (Vapor Deposition Polymerization 방법을 이용한 유기 박막 트렌지스터의 제작)

  • 표상우;김준호;김정수;심재훈;김영관
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.190-193
    • /
    • 2002
  • The processing technology of organic thin-film transistors (Ons) performances have improved fur the last decade. Gate insulator layer has generally used inorganic layer, such as silicon oxide which has properties of a low electrical conductivity and a high breakdown field. However, inorganic insulating layers, which are formed at high temperature, may affect other layers termed on a substrate through preceding processes. On the other hand, organic insulating layers, which are formed at low temperature, dose not affect pre-process. Known wet-processing methods for fabricating organic insulating layers include a spin coating, dipping and Langmuir-Blodgett film processes. In this paper, we propose the new dry-processing method of organic gate dielectric film in field-effect transistors. Vapor deposition polymerization (VDP) that is mainly used to the conducting polymers is introduced to form the gate dielectric. This method is appropriate to mass production in various end-user applications, for example, flat panel displays, because it has the advantages of shadow mask patterning and in-situ dry process with flexible low-cost large area displays. Also we fabricated four by four active pixels with all-organic thin-film transistors and phosphorescent organic light emitting devices.

  • PDF

Fabrication of a low-power 1×2 polymeric thermo-optic switch with a trench structure (트렌치 구조를 이용한 저전력 1×2 폴리머 열 광학 스위치의 제작)

  • 여동민;김기홍;신상영
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.1
    • /
    • pp.33-37
    • /
    • 2003
  • A low-power $1{\times}2$ polymeric thermo-optic switch with a trench structure is proposed and fabricated. The trench structure in the optimized region slows down the heat flow from the electrodes, which contributes to the reduction of power consumption. The temperature distribution in the polymer layers has been adjusted to increase the temperature gradient between the two arms of the Y-branch. For comparison, a $1{\times}2$ polymeric thermo-optic switch with no trench structure is fabricated together on the same substrate. In the device with a trench structure, the measured crosstalk is less than -17.0 dB for TE polarization.-15.0 dB for TM polarization. The power consumption is about 66 mW, which is 25% less than that of the device with no trench structure.

Graphene Oxide Thin Films for Nonvolatile Memory Applications

  • Kim, Jong-Yun;Jeong, Hu-Young;Choi, Hong-Kyw;Yoon, Tae-Hyun;Choi, Sung-Yool
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.9-9
    • /
    • 2011
  • There has been strong demand for novel nonvolatile memory technology for low-cost, large-area, and low-power flexible electronics applications. Resistive memories based on metal oxide thin films have been extensively studied for application as next-generation nonvolatile memory devices. However, although the metal oxide-based resistive memories have several advantages, such as good scalability, low-power consumption, and fast switching speed, their application to large-area flexible substrates has been limited due to their material characteristics and necessity of a high-temperature fabrication process. As a promising nonvolatile memory technology for large-area flexible applications, we present a graphene oxide-based memory that can be easily fabricated using a room temperature spin-casting method on flexible substrates and has reliable memory performance in terms of retention and endurance. The microscopic origin of the bipolar resistive switching behaviour was elucidated and is attributed to rupture and formation of conducting filaments at the top amorphous interface layer formed between the graphene oxide film and the top Al metal electrode, via high-resolution transmission electron microscopy and in situ x-ray photoemission spectroscopy. This work provides an important step for developing understanding of the fundamental physics of bipolar resistive switching in graphene oxide films, for the application to future flexible electronics.

  • PDF

Effect of the Casting Conditions on the Globulization of Primary Al of $AlSi_7Mg$ Alloy (($AlSi_7Mg$알루미늄 합금의 초정 구형화에 대한 주조조건의 영향)

  • Han, Yo-Sub;Lee, Ho-In;Lee, Jae-Chul
    • Journal of Korea Foundry Society
    • /
    • v.23 no.1
    • /
    • pp.40-46
    • /
    • 2003
  • Semisolid forming requires alloys with non-dendritic microstructure of the thixotropy. Recently, low pouring temperture method without stirring, i.e. liquidus casting has been found out new fabrication method of the semisolid metals. Effects of melt superheat and mold conditions on the globulization of primary Al of $AlSi_7Mg$ alloy were investigated in gravity casting process without stirring. The microstructures of primary Al as function of melt superheat and mold temperature show globular, rosette and dendritic shapes. The conditions for globular microstructure of primary Al were low melt superheat < 35 K and low mold temperature < 500 K. The thermal conditions for globular microstructure of primary Al were undercooled melt at early solidification stages and slow cooling < 0.6 K/s. It was found that the initial microstructure was maintained throughout the solidification and the globules of primary Al can be obtained by high nucleation of fine and spherical nuclei due to enhanced undercooling of melt.

Synthesis and Characterization of Crosslinked Hole Transporting Polymers for Organic Light Emitting Diodes

  • Jang, Do-Young;Lim, Youn-Hee;Kim, Joo-Hyun;Kim, Jang-Joo;Shin, Jung-Hyu;Yoon, Do-Y.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.235-235
    • /
    • 2006
  • Triphenylamine derivatives play important roles as hole transporting materials in organic light emitting devices. However, low molecular weight triphenylamine derivatives show low glass transition temperature and aggregation behavior, and the vapor deposition step of low molecular weight materials is incompatible with large area display fabrication. Conventional polymer PEDOT-PSS HTL has serious drawbacks such as the ITO anode corrosion, poor surface energy match with aromatic EMLs. To solve these problems, we introduced crosslinkable units to triphenylamine-based polymers to make insoluble HTL by thermal curing following spin-coating. Electrochemical and optical properties of the new hole transporting materials were investigated. In addition, the device characteristics obtained with new hole transporting polymers were investigated in details.

  • PDF

A Study on Physical Properties of Carbon Nitride Films and Application for Sensor Materials (질화탄소막의 물리적 특성과 센서재료 응용에 관한 연구)

  • Kim, Sung-Yeop;Lee, Ji-Gong;Chang, Choong-Won;Lee, Sung-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.5
    • /
    • pp.436-442
    • /
    • 2007
  • Physical properties and impedance-humidity characteristics of carbon nitride films were investigated for micro-humidity-sensors. Carbon nitride films were deposited in low temperature and low power for application of semiconductor fabrication process, and empirical equation was proposed for thickness evaluation. Deposited films had an uniform and compact surface comparing with previously reported results, which was expected a good candidate for humidity sensing materials. Carbon nitride humidity sensors based on Si substrate revealed good humidity-impedance characteristics with a wide range of relative humidity and showed low hysteresis.

Ultrafine Grained Steels Processed by Equal Channel Angular Pressing

  • Shin, Dong Hyuk
    • Corrosion Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.23-26
    • /
    • 2006
  • Recent development of ultrafine grained (UFG) low carbon steels by using equal channel angular pressing (ECAP) and their room temperature tensile properties are reviewed, focusing on the strategies overcoming their inherent mechanical drawbacks. In addition to ferrite grain refinement, when proper post heat treatments are imposed, carbon atom dissolution from pearlitic cementite during ECAP can be utilized for microstructural modification such as uniform distribution of nano-sized cementite particles or microalloying element carbides inside UFG ferrite grains and fabrication of UFG ferrite/martensite dual phase steel. The utilization of nano-sized particles is effective on improving thermal stability of UFG low carbon ferrite/pearlite steel but less effective on improving its tensile properties. By contrast, UFG ferrite/martensite dual phase steel exhibits an excellent combination of ultrahigh strength, large uniform elongation and extensive strain hardenability.

Humidity and Temperature Response Characteristics of Optical Fiber Dislocation Fusion Sensor Coated with Graphene Quantum Dots

  • Dailin Li;Xiaodan Yu;Ning Wang;Wenting Liu;Shiqi Liu;Liang Xu;Dong Fang;Huapeng Yu
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.504-510
    • /
    • 2023
  • An optical fiber dislocation fusion humidity sensor coated with graphene quantum dots is investigated. A Mach-Zehnder interferometer is fabricated with three dislocated single-mode fibers with graphene quantum dots coating humidity-sensitive materials. Humidity response experiments showed a good linear response and high sensitivity with easy fabrication and low-cost materials. From 22% to 98% RH, the humidity response sensitivity of the sensor is 0.24 dB/% RH, with 0.9825 linearity. To investigate the cross-response of humidity and temperature, temperature response experiments are conducted. From 30 ℃ to 70 ℃, the results showed 0.02 dB/℃ sensitivity and 0.9824 linearity. The humidity response experimental curve is compared with the temperature experimental curve. The big difference between humidity sensitivity and temperature sensitivity is very helpful to solve the cross-response of humidity and temperature. The influence of temperature fluctuations in humidity measurements is not obvious.