• Title/Summary/Keyword: low-strength concrete

Search Result 1,248, Processing Time 0.03 seconds

Performance Evaluation of Prepackaged-Type Low Shrinkage Surface Preparation materials Using Redispersible Polymer Powder (재유화형 분말수지를 이용한 프리페키지드형 저수축 표면조정재의 성능평가)

  • ;Demura, Katsunori
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.368-373
    • /
    • 1998
  • Prepackaged system consists out of a dry mix which contains cement, sand, redispersible polymer powder and admixtures in the right proportions. The purpose of this study is to evaluate the quality of prepackaged-type polymer-modified mortar products using redispersible poly(ethylene-vinyl acetate)(EVA) powder. Polymer-modified mortars using the redispersible polymer powder with powdered with powdered shrinkage-reducing agent were prepared with cellulose fiber contents of 0, 0.5, 1.0% and shrinkage-reducing agent contents of 0, 4%, and tested for drying shrinkage, strength, adhesion in tension, water absorption. From the test results, the prepackaged-type polymer-modified mortar products with 4% of shrinkage-reducing agent content give good properties. and that their properties largely depends on the shrinkage-reducing agent content rather than the cellulose fiber contents.

  • PDF

Fragility curves and loss functions for RC structural components with smooth rebars

  • Cardone, Donatello
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1181-1212
    • /
    • 2016
  • Fragility and loss functions are developed to predict damage and economic losses due to earthquake loading in Reinforced Concrete (RC) structural components with smooth rebars. The attention is focused on external/internal beam-column joints and ductile/brittle weak columns, designed for gravity loads only, using low-strength concrete and plain steel reinforcing bars. First, a number of damage states are proposed and linked deterministically with commonly employed methods of repair and related activities. Results from previous experimental studies are used to develop empirical relationships between damage states and engineering demand parameters, such as interstory and column drift ratios. Probability distributions are fit to the empirical data and the associated statistical parameters are evaluated using statistical methods. Repair costs for damaged RC components are then estimated based on detailed quantity survey of a number of pre-70 RC buildings, using Italian costing manuals. Finally, loss functions are derived to predict the level of monetary losses to individual RC components as a function of the experienced response demand.

Behavior of Integrated Column and Foundation by Field Load Tests (기초와 기둥 통합구조물의 현장시험 및 거동)

  • Yoon, Yeo-Won;Kim, Keun-Soo;Min, Kwang-Hong;Lee, Young-Ho;Kim, Dae-Hak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1073-1076
    • /
    • 2010
  • Shallow foundations of various columns such as traffic signs, CCTVs, traffic lights, street lights, steel telephone poles and so on are made by cast-in-situ concrete method. However, typical cast-in-situ method has many problems because of the long duration of construction, occupation of sidewalks and low strength of the concrete after curing. In order to solve the problems, field load tests for the prefabricated DSF foundation made by combination of column and foundation was conducted to know load-deformation behavior by torsional tests.

  • PDF

Chloride ion and Carbonation Resistance of the Cement Mortar admixed with Waste Phosphogypsum (폐석고를 혼입한 모르타르의 염화물 이온 및 중성화에 대한 저항성)

  • An, Yang-Jin;Mun, Kyoung-Ju;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.727-730
    • /
    • 2005
  • The purpose of this study evaluates possibilities of waste phosphogypsum into concerts by steam curing admixture. The waste phosphogypsum is made use of 4 forms(Dehydrate, $\beta$-Hemihydrate, III-Anhydrite and II-Anhydrite) which were changed to in low temperature of calcination. The penetration depth and compressive strength of cement mortar are investigated to evaluate the chloride ion and carbonation resistance. As a result, chloride ion and carbonation resistance of cement mortar admixed with waste phosphogypsum are more excellent than cement mortar contained OPC alone. The internal pores of cement mortar are decreased by using waste phosphogypsum, because the hydrates of ettringite which is denesified in structure is much formed in early ages at steam curing. These densified effect is concluded with improving the resistance to attack of cement mortar including waste phospogypsum.

  • PDF

A Fundamental Study in order to Utilize Waste Glasses Powder as Admixtures of Repair Mortar (폐유리 미분말을 보수모르타르의 혼합재료로 활용하기 위한 기초적 연구)

  • Choi, Yun-Wang;Jung, Moon-Yung;Kang, Hyun-Jin;Jung, Woo-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.341-344
    • /
    • 2006
  • The waste glasses among plenty of wastes put out lately is limited in recycling and reusing, and the phenomenon hasn't been improved quite much. And besides, the recycling rate shows the 70.1%, relatively low. These waste glasses is currently used for road pavement materials, interior and exterior decorating materials in architecture, road painting meterials, auxiliary lagging materials for heat-retaining, coldness-retaining and soundproofing, and glass bottles. 30% of waste glasses powder is, however, not reused pratically. Therefore, in this research, we operated some tests including flow of mortar mixed with waste glasses powder, setting time, rheology and compressive strength to utilize waste glasses powder put out in the precess of recycling for admixture for repair mortar. As a result, we've found out that we can utilize waste glasses powder for admixture for repair mortar.

  • PDF

Flexural Rigidity of MMA-Modified Fiberglass Reinforced Plastic Composite Pipe (MMA 개질 강화 플라스틱 복합관의 휨강성)

  • 연규석;최종윤;백종만;권택정;정중호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.429-432
    • /
    • 2003
  • MMA-modified fiberglass-reinforced plastic composite pipe was produced by using the binder of MMA-modified unsaturated polyester resin in which low viscosity MMA was added to unsaturated polyester resin. Sixteen specimens were made of polymer mortar and fiberglass-reinforced plastic by the centrifugal method. For these specimens the external strength tests were carried out by taking the core thickness consisting of polymer mortar and the fiberglass content per unit area as experimental variables to figure out the effect of variations of these variables influencing on flexural rigidity that is an important property for the composite pipe. Results of this study are believed to provide the basic data for more economical and practical design of MMA-modified fiberglass-reinforced plastic composite pipe.

  • PDF

Characterization of Mortar with Steel Slag (제강슬래그 사용 모르타르의 특성 검토)

  • Choi, Hoon-Gook;Kim, Sung-Su;Yoo, Jung-Hoon;Kim, Jung-Bin;Jeong, Yong;Park, Min-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.231-232
    • /
    • 2010
  • In this study, we assessed on quality of mortar using the steel slag powder as binder. Then we investigated properties of mortar in the long term using steel slag for fine aggregate. As a result of experiment, quality of the mortar using steel slag powder appeared too low compared with using only OPC and compressive strength of specimen using the steel slag fine aggregate have similar using crush sand.

  • PDF

Eartqyake-Resistance of SlenderShear Wall With no Boundary Confinement (단부 횡보강이 없는 세장한 전단벽의 내진성능)

  • 박홍근;강수민;조봉호;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.375-380
    • /
    • 2000
  • Experimental and numerical studies were done to investigate seismic performance of slender sheat wall with no boundary confinement. 1/3 scale-specimens that model the plastic region of long slender shear walls subjected to combined axial load and bending moment were rested to investigate strength, ductility, capacity of energy dissipation and strain distribution. The experimental results show that the slender walls fail due to early crushing in the compressive boundary, and then have very low ductility. The measured maximum compressive strain is 0.0021, which is much less then 0.004 being commonly used for estimation of ductility. The experimental results indicates that the maximum compressive strain is not a fixed value but is affected by moment gradient along the shear wall height and distance from neutral axis to the extreme compressive fiber.

  • PDF

Static Test on Aged RC Bridge Slabs Strengthened With TYFO Glassfibers (TYFO 유리섬유로 보강된 노후교량 상판에 대한 정적실험)

  • 송재필;김철우;김기봉;정영수;이광명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.621-626
    • /
    • 1997
  • Recently, TYFO glassfibers have been used for strengthening n aged RC bridge slabs because of low material cost and easy repairing work. The purpose of this study is to experimentally and analytically investigate the effect of TYFO glassfibers for enhancing the capacity of aged RC bridge slabs. Tes result shows that yield and ultimate strength of RC slabs with TYFO are increased as 11~18% and 25~35% comparing with those for RC slabs without TYFO, respectively, Also, ductility of RC slabs strengthened with TYFO have been significantly increased. Further tests have been performing on aged RC bridge slabs strengthened with carbon fiber strips.

  • PDF

Earthquake-Resistance of Slender Shear Wall with No Boundary Confinement (단부 횡보강이 없는 세장한 전단벽의 내진성능)

  • 박홍근;강수민;조봉호;홍성걸
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.47-57
    • /
    • 2000
  • Experimental and numerical studies were done to investigate seismic performance of slender shear walls with no boundary confinement that are principal structural members of high0rise bearing wall buildings. 1/3 scale specimens that model the plastic region of long slender shear walls subjected to combined axial load and bending moment were tested to investigate strength, ductility, capacity of energy dissipation, and strain distribution, The experimental results show that the slender shear walls fail due to early crushing in the compressive boundary, and then have very low ductility. The measured maximum compressive strain is 0.0021, much less than 0.004 being commonly used for estimation of ductility. This result indicates that the maximum compressive strain is not a fixed value but is affected by moment gradient along the shear wall height and distance from the neutral axis to the extreme compressive fiber.