• Title/Summary/Keyword: low-strength concrete

Search Result 1,248, Processing Time 0.029 seconds

A Study on Shear Strength Prediction for Reinforced High-Strength Concrete Deep Beams Using Softened Strut-and-Tie Model (연화 스트럿-타이 모델에 의한 고강도 철근콘크리트 깊은 보의 전단강도 예측에 관한 연구)

  • Kim, Seong-Soo;Lee, Woo-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.159-169
    • /
    • 2003
  • In the ACI Code, the empirical equations governing deep beam design are based on low-strength concrete specimens with $f_{ck}$ in the range of 14 to 40MPa. As high-strength concrete(HSC) is becoming more and more popular, it is timely to evaluate the application of HSC deep beam. For the shear strength prediction of HSC deep beams, this paper proposed Softened Strut-and-Tie Model(SSTM) considered HSC and bending moment effect. The shear strength predictions of the proposed model, the Appendix A Strut-and-Tie Model of ACI 318-02, and Eq. of ACI 318-99 11.8 are compared with the experimental test results of 4 deep beams and the collected experimental data of 74 HSC deep beams, compressive strength in the range of 49~78MPa. The proposed SSTM performance consistently reproduced 74 HSC deep beam measured shear strength with reasonable accuracy for a wide range of concrete strength, shear span-depth ratio, and ratio of horizontal and vertical reinforcement.

Bond Characteristics of Reinforcing Bars Embeded in High Strength Concrete (고강도 콘크리트에 매립된 철근의 부착특성)

  • 최종수;유석형;안종문;이광수;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.319-324
    • /
    • 1994
  • Bond test was carried out to assess the effect of several variables on bond characteristics between reinforcing bar and concrete. Key variables are concrete compressive strength(low, medium high, and ultra-high), bar diameter(13mm and 22mm), and concrete cover(25mm; 1-inch, 38mm; 1.5-inch, and 51mm; 2-inch). Confining effect and bar spacing are not taken into account. Thirty-two specimens subjected to uniaxial tension were tested under hypothesis uniform bond stress distribution along the reinforcing bar embeded in concrete. Test results(ultimate bond stress) were compared with bond and development provisions of the ACI building Code(ACl 318-89) and local bond stress versus slip relationship diagram represented to show effect of the above variables.

  • PDF

Properties of Recycled Concrete with High Quality Recycled Aggregate (고품질 재생 골재를 사용한 콘크리트의 특성)

  • Jong, Ji-Yong;Kawg, Eun-Gu;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.384-387
    • /
    • 2004
  • Though recycled aggregate is useful resources for concrete, its application to structural frame is not frequent, because of low quality of recycled aggregate. Owing to the development of manufacturing technology to recycled aggregate, it is possible to produce high quality recycled aggregate. The purpose of this study is to confirm the applicability of the high quality recycled aggregate, instead of the natural aggregate, to normal concrete. Main factors of this study are substitute proportion of recycled aggregate, types of recycled aggregate, targeting compressive strength of recycled concrete. From the results of the study, we concluded that it is possible to use high quality recycled aggregate, to get the same strength as concrete using normal aggregate.

  • PDF

Effect of Excessive Addition of Organic Admixtures on the Properties of Concrete (콘크리트용 유기혼화제의 과잉첨가 효과)

  • 최재진;박원태;김기형;최연왕
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.631-637
    • /
    • 1999
  • Effect of excessive addition of water reducing agent was examined by concrete tests. Water reducing agents of lignin or naphtalene base were used in the experiment. Setting of concrete was retarded according to the increase of dosage of water reducing agent and was extremely delayed at the 3 times or more use of lignin base agent and near 5 times or more use of naphtalene base agent respectively. When water reducing agent was used more than 6 times of standard dosage, early strength of concrete was very low and the strength reduction was very severe at all test ages in the concrete using lignin base agent.

  • PDF

An Experimental Study on the Performance Evaluation of Structural Synthetic Fiber-Reinforced Shotcrete (구조용 합성섬유보강 숏크리트의 성능평가에 관한 실험연구)

  • 오병환;최승원;박대균;한일영;김방래;신용석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.373-378
    • /
    • 2003
  • The cement-based composites have relatively low tensile strength and toughness. The fiber addition is one of the most important ways of increasing the toughness of concrete. The steel fibers have been used conventionally in the shotcrete of tunnel lining. Recently, the structural synthetic fibers were developed and used frequently in some actual tunnel shotcreting in foreign countries. Now types of synthetic fibers have been developed in this study. The purpose of this study is to explore the strength and toughness characteristic of the concrete reinforced with synthetic fibers developed in this study. The result were compared with those of steel fiber reinforced concrete. It is seen that the performance of synthetic fiber reinforced concrete is good as much as that of steel fiber reinforced concrete, while the synthetic fibers have advantages in corrsion resistance and economy.

  • PDF

Application of various types of recycled waste materials in concrete constructions

  • Hosseini, Seyed Azim
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.479-489
    • /
    • 2020
  • Studies have proved that the mechanical properties of concrete, suddenly is dropped off with employing waste materials as replacements. The effectiveness of fibre addition on the structural stability of concrete has been indicated in recent investigations. There are different waste aggregates and fibres as plastic, rubber tire, coconut, and other natural wastes, which have been evaluated throughout the last decades. The fibres incorporation has a substantial effect on the properties of concrete mix subjected to different loading scenarios. This paper has reviewed different types of wastes and the effect of typical fibres including Poly Ethylene Terephthalate (PET), rubber tire, and waste glass. Furthermore, waste plastic and waste rubber has been especially studied in this review. Although concretes containing PET fibre revealed a reduction in compressive strength at low fibre fractions, using PET is resulted to micro-cracking decrement and increasing flexibility and flexural strength. Finally, according to the reviews, the conventional waste fibres are well-suited to mitigated time-induced damages of concrete and waste fibres and aggregates could be a reliable replacement for concrete.

Application of Cold Weather Concrete using Accelerator for Freeze Protection (내한촉진제를 사용한 한중콘크리트의 현장적용)

  • Park, Sang-Joon;Won, Chul;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.13.2-17
    • /
    • 2003
  • When fresh concrete is exposed to low temperature, the concrete may suffer frost damage due to freezing at early ages and strength development may be delayed. One of the solution methods to resolve these problems is to lower freezing temperature of concrete by the use of chemical admixture called Accelerators for Freeze Protection. In this study, it was the results of appling cold weather concrete using Accelerator for Freeze Protection in the Daewoo Trump world field. Before the application of the cold weather concrete using accelerator for freeze protection, we executed the some test in the laboratory and mock-up test in the field. We examined the manifestation of compressive strength complying with the amount of Accelerators for Freeze Protection and curing conditions, and then made a selection of most suitable amount of Accelerators for Freeze Protection.

  • PDF

The Study of Experiment on Preventing Frost Damage at Early Age of Mortar in Low Temperature using Reduction Slag. (환원슬래그를 사용한 모르타르의 저온에서의 초기동해 방지에 관한 연구)

  • Kim, Hyeong-Cheol;Choi, Hyun-Kuk;Min, Tae-Beom
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.203-204
    • /
    • 2016
  • In this research, it used cement power and reduction slag, which generates high hydration heat in hydration reation without heat cure below -5℃ degree. Purpose of final research is preventing freezing and thawing by making the compressive strength 5MPa in 3days below zero temperature due to own heat of concrete. and it is the result of physical characteristic and thermal property evaluation of reduction slag. Because reduction sag generates high hydration heat, compressive strength development is excellent. By generating highly Hydration heat by C12A7 and C3A in reduction slag, compressive strength is developed in low temperature. In case of displacing only reduction slag without SO3, it is indicated that quick-setting occurs by shortage of SO3. For preventing quick-setting, gypsum is used essentially. According to this research result, in case of using reduction slag and gypsum as a ternary system, Compressive strength developed 5MPa in 3days below zero temperature. It is identified to prevent early frost damage of concrete below zero temperature.

  • PDF

Effect of the Various Combinations of the Binders and the Silica Fume Types to the Physical Properties of the Pre-Mix Cement (프리믹스 시멘트의 물리적 특성에 미치는 결합재조합 및 실리카퓸 종류의 영향)

  • Jin, Cheng-Ri;Kim, Ki-Hoon;Pei, Chang-Chun;Lee, Hai-III;Kim, Sung-Su;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.37-40
    • /
    • 2007
  • This study investigates the effect of the pre-mix cement to the physical properties of the concrete according to the various combinations of the binders and the silica fume types. The results are summarized as following. For the properties of the fresh, the fluidity in the case that OPC+cilica fume-blast-furnace slag is appropriate compared to OPC+cilica fume+fly ash. Expecially, it is favorable when pre-mix is used. The fluidity time of the A, B depending on silica fume types is favorable, but it is decreased on C. The air content depending on silica fume types is low when the fly ash is used. Specially, the air content in the case that pre-mix is used is low caused by the dispersion of the silica fume. For the properties of the hardened concrete, the compressive and flexible strength when the blast-furnace slag is pre-mixed are high, and they exceed OPC. The strength depending on the silica fume types is high on B, and the strength of the others is similar.

  • PDF

The Effects of Various Cement Type and Compositions on the Material Properties of high Strength Concrete (시멘트 특성의 변화가 고강도콘크리트의 재료특성에 미치는 영향)

  • 백상현;이종열;엄태선;임채용;안광원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.47-52
    • /
    • 2000
  • Recently, it is very necessary the development of the manufacturing techniques for high strength concrete(HSC) for the large-scale size and good quality of civil structure. But, the manufacture and quality control of HSC of which shrinkage, heat of hydration and workability at construction filed are considered, is very difficult due to its low water-cement ratio and high quantity of unit cement content. In the present study, we tried to know and assess the influences of chemical and physical properties of cement on the material properties of HSC. We analyzed basic properties of 4 kinds of cement whose chemical and physical properties are different each other through various tests such as chemical analysis and mortal test. Also, we performed the assessment of the material properties of HSC for each dement by the test for the conditions of same mix design and similar compressive strength. From the results in the study, the assessment of the important quality factors of cement influencing the properties of HSC may be utilized to quality control of applied cement to manufacture the HSC of high quality.

  • PDF