• Title/Summary/Keyword: low-strength concrete

Search Result 1,248, Processing Time 0.032 seconds

Case Study of Flexural Strength Evaluation of Epoxy Injected Concrete Using Low Pressure Mixed with Mechanical High Pressure (기계식 고압과 저압을 혼용한 에폭시 주입 콘크리트의 휨강도 검토 사례 연구)

  • Hong, Ki-Nam;Yu, Yeon-Jong;Lee, Kang-Moon;Ryu, Chang-Yeol;Yoon, Hong-Su
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.49-54
    • /
    • 2012
  • The objective of this study is to investigate the capacity of epoxy injection method using low pressure mixed with high pressure. Injection depth test and flexural strength test were respectively performed on $40{\times}45{\times}35$ cm and $100{\times}10{\times}40$ cm specimens. Considered as the test variables were injection type(low pressure, low and high pressure), crack width(0.25 mm, 0.50 mm), injection direction(upper, lower, side), and epoxy viscosity(low, medium, high). Test results showed that low viscosity epoxy injection depth of injector using low pressure mixed with high pressure for upper direction were 23 cm and tension strength of crack face repaired by injector using low pressure mixed with high pressure was larger than that of concrete.

A Study on the Engineering Properties of Concrete Using High Volume of Volcanic Ash (화산재를 대량 사용한 콘크리트의 특성)

  • Jo Byung Wan;Koo Ja Kap;Park Seung Kook;Lee Yeon Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.33-36
    • /
    • 2005
  • Recently, the use of volcanic-ash as a part of cement content in concrete is very common. But, it has been indicated that the compressive strength of concrete using large amount of volcanic-ash as a part of cement content in early age is low and carbonation velocity is fast. To solve those problems, High Volume Volcanic-Ash Concrete which contained large amount of volcanic-ash as a part of fine aggregate has been proposed. This is an experimential study to compare and analyze the properties of High Volumn Volcanic-Ash Concrete according to the replacement method and ratio of volcanic-ash. For this purpose, the mix proportion of concrete according to the replacement method(PL, C10, C150, A10, A100, A150) And then slump, setting time, bleeding, compressive strength, tensile strength and carbornation test were performed. According to test results, it was found that the compressive strength of the concrete using the volcanic-ash as a part of fine aggregate(A) was higher than that of the concrete using the volcanic-ash as a part of cement content(C). And, the compressive strength of the A concrete increased in early age as well as in long tern age as the volcanic-ash content increased.

  • PDF

A Study on Reducing Deterioration in Long-span Slab Concrete (장스팬 슬라브 콘크리트의 열화저감에 대한 연구)

  • Kim, Dae-Geon;Cha, Hun;Choi, Sang-Hwan;Moon, Kyeong-Sik
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.11-12
    • /
    • 2014
  • In this study, fundamental properties of concrete mixed with fiber has been analysed. Compressive strength, tensile strength and plastic shrinkage has been tested to conduct the optimum addition ratio of fiber. Effect to control press concrete's cracking has been tested. The following results could be made as the conclusion. For the flowability, slump decreased about 41-79% when all types of fiber used in the concrete. When the addition ratio of fiber is 1.2%, the slump of concrete decreased about 45%. For the strength properties. all the specimens with different addition ratio of fiber shown higher compressive strength comparing with Plain. Comparing with Plain, cracking decreased when the fiber added. Especially, when NY fiber used in the concrete, the plastic shrinkage did not occurred. In addition, Latex modified concrete(LMC) has improved superior physical and chemical properties. The properties of latex, combined with the low water-cement ratio, produce a concrete that has improved flexural, tensile, and bond strength, lower modulus of elasticity, increased freeze-thaw resistance, and reduced permeability compared to conventional concrete of similar mix design.

  • PDF

Influence of supplementary cementitious materials on strength and durability characteristics of concrete

  • Praveen Kumar, V.V.;Ravi Prasad, D.
    • Advances in concrete construction
    • /
    • v.7 no.2
    • /
    • pp.75-85
    • /
    • 2019
  • The present study is focused on the mechanical and durability properties of ternary blended cement concrete mix of different grades 30 MPa, 50 MPa and 70 MPa. Three mineral admixtures (fly ash, silica fume and lime sludge) were used as a partial replacement of cement in the preparation of blended concrete mix. The durability of ternary blended cement concrete mix was studied by exposing it to acids HCl and $H_2SO_4$ at 5% concentration. Acid mass loss factors (AMLF), acid strength loss factor (ASLF) and acid durability factor (ADF) were determined, and the results were compared with the control mix. Chloride ions penetration was investigated by conducting rapid chlorination penetration test and accelerated corrosion penetration test on control mix and ternary blended cement concrete. From the results, it was evident that the usage of these mineral admixtures is having a beneficiary role on the strength as well as durability properties. The results inferred that the utilization of these materials as a partial replacement of cement have significantly enhanced the compressive strength of blended concrete mix in 30 MPa, 50 MPa and 70 MPa by 42.95%, 32.48% and 22.79%. The blended concrete mix shown greater resistance to acid attack compared to control mix concrete. Chloride ion ingress of the blended cement concrete mix was low compared to control mix implying the beneficiary role of mineral admixtures.

Principal Component and Multiple Regression Analysis for Steel Fiber Reinforced Concrete (SFRC) Beams

  • Islam, Mohammad S.;Alam, Shahria
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.4
    • /
    • pp.303-317
    • /
    • 2013
  • This study evaluates the shear strength of steel fiber reinforced concrete (SFRC) beams from a database, which consists of extensive experimental results of 222 SFRC beams having no stirrups. In order to predict the analytical shear strength of the SFRC beams more precisely, the selected beams were sorted into six different groups based on their ultimate concrete strength (low strength with $f_c^{\prime}$ <50 MPa and high strength with $f_c^{\prime}$ <50 MPa), span-depth ratio (shallow beam with $a/d{\geq}2.5 $and deep beam with a/d<2.5) and steel fiber shape (plain, crimped and hooked). Principal component and multiple regression analyses were performed to determine the most feasible model in predicting the shear strength of SFRC beams. A variety of statistical analyses were conducted, and compared with those of the existing equations in estimating the shear strength of SFRC beams. The results showed that the recommended empirical equations were best suited to assess the shear strength of SFRC beams more accurately as compared to those obtained by the previously developed models.

Studies on the Evaluation Method of Strength Comparison for Application in Joint Separation Test Body to Structural Concrete (구조체 콘크리트에 접합분리 시험체의 적용을 위한 강도비교에 관한 실험적 연구)

  • Kim, Seong-Deok;Lee, Seon-Ho;Jung, Kwang-sik;Paik, Min-su;Lee, Young-Do;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.79-82
    • /
    • 2008
  • It has been reported that destruction test by core collection is the most reliable of the structural concrete strength in present building construction field. But it causes low efficiency by damage and cutting in structure due to the core collection. It also has some problems in repairing. Additionally in case of strength test with management specimen, different environment compared to the structure environment cause problems about estimation precise structure strength. Therefore, it is required to develop structure direct strength test that has test values and credibility above the ones obtained by core specimen collection strength test and seasonal specimen test to suggest a reasonable and practical management method of structural concrete.

  • PDF

The Mechanical Characteristics and Hydration Heat on the Cold Weather Concrete using High Early Strength Portland Cement (조강시멘트를 사용한 한중콘크리트의 수화발열 및 역학적 특성)

  • Lee Won Am;Um Tae Sun;Ryu Jae Sang;Lee Jong Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.305-308
    • /
    • 2004
  • Cold weather concrete is the concrete which is used during construction under low-temperature' environment, and this kind of concrete has to be taken care not to be frozen in early ages of setting-hardening, It is specified in the Concrete Standard Specification(2003) as 'the cold weather concrete must be used on the weather condition under the average daily outdoor temperature below $4^{\circ}C$.' In this research, the mechanical characteristics and hydration heat on the cold weather concrete using high early strength portland cement were studied. As a result, the excellent quality was obtained and high early strength portland cement is expected to be used widely as the cold weather concrete.

  • PDF

Material Development of Eco Water Tank with High Density Polyethylene and Low-temperature Concrete (친환경 저수조를 위한 고밀도 폴리에틸렌과 저열성 콘크리트 합성재료 개발)

  • Chang, Chun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.133-140
    • /
    • 2010
  • The purpose of this study is to evaluate the new eco water tank which is made of high density polyethylene and concrete with low temperature cement. The strength and failure mode of eco water tank was examined through tensile test with mixture of concrete and HDPE, temperature monitoring for various kind of concrete, admixture contains etc. The strength and failure mode were examined through tensile test with mixture of concrete and HDPE, temperature monitering for different kinds of concrete, strength test with different admixtures etc. It was found that shear connector between concrete and HDPE effects significantly contributed to the combined structures. ㄱ type shear connector results in tensile strength of up to 40% compared to that of V type shear connector. Based on test result, the new eco composite tank improved the stability and safety the old one and demonstrated the applicability and capability.

An Experimental Study on the Characteristics of Hydration Heat Generation of Low Heat Concrete with Binder Types (결합재 종류에 따른 저발열 콘크리트의 수화발열 특성에 관한 실험적 연구)

  • Kim, Yong-Ro;Jung, Yang-Hee;Lee, Sang-Ho;Kim, Do-Su;Khil, Bae-Su;Han, Seung-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.417-420
    • /
    • 2006
  • Recently, the attention is paid to the problem of thermal crack by hydration heat according to the increase of high strength and mass concrete structures. At this point, various research has been carried out for the control of hydration heat in high strength and mass concrete. As a part of the research, it was investigated application of hydration heat reduction agent (HR) for the control of thermal crack by hydration heat in this study. To investigate the application, it was selected HR which can reduce hydration heat of concrete with effect in series I and II. Also, it was investigated the characteristics of hydration heat generation of low heat concrete using HR with binder types in seriesIII.

  • PDF

A Field Application of Non-shrinkage Concrete Pavement using CSA Expansive Additive (CSA계 팽창재를 사용한 무수축콘크리트의 도로포장 현장적용 사례연구)

  • 이재한;송경환;최일규;김창률;민경소
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.183-188
    • /
    • 1997
  • From a viewpoint of construction cost and preserving management of pavement, a policy of domestic pavement was gradually spreaded concrete pavement rather than asphalt. But the use of concrete with ordinary portland cement has shortages, such as dry-shrinkage, low flexural strength, etc. In order to overcome these problems, the concrete pavement using CSA expansive additive (Non-Shrinkage Cement) was studied and carried out the fie이 application. As the results, we find out Non-Shrinkage Cement that was distinguished in short-term construction by increasing flexural strength, shrinkage compensating and low-heat evaluation compared with OPC concrete.

  • PDF