• Title/Summary/Keyword: low-strength concrete

Search Result 1,248, Processing Time 0.025 seconds

Study on the mix proprotion and the thermal crack of Ultra High Strength Concrete (초고강도 콘크리트의 배합 및 온도균열에 대한 연구)

  • Moon, Han-Young;Kim, Byoung-Kwon;Son, Young-Hyun;Kang, Hoon;Kim, Jeong-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.265-268
    • /
    • 1999
  • In this study, we manufactured the ultra-high strength concrete using mineral admixture which is easily workable. From the test results of compressive strength, It is concluded that the proper replacement ratio of silica fume should not exceed to 10% and the replacement of slag is more effective that the replacement of fly ash to gain very high compressive strength. Thermal stress analysis is conducted to find the way of controlling the thermal crack of ultra-high strength concrete. As results of thermal stress analysis, it was found that reducing placing temperature of concrete(pre-cooling) is effective to reduce thermal crack and placing concrete in high air temperature is more effective than placing concrete in low air temperature.

  • PDF

A study on the Fundamental Properties of Concrete with Belite Cement (벨라이트시멘트 콘크리트의 기초적 성질에 대한 연구)

  • 문한영;문대중;하상욱;김기수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.167-170
    • /
    • 1998
  • As construction technology advances, most of concrete structures are becoming larger and taller. Therefore, high strength and high quality concrete is necessary for them. Nowadays, the proposal of using belite rich cement is investigated to satisfy high flowing, low heat, and high strength. In this study, the height difference, the falling time and the maximum temperature of concrete using BRC were lower than that of concrete using OPC. Furthermore the compressive strength of concrete using BRC with and without compacting was not different. And the compressive strength of core specimens was higher than that of specimens in water curing. Compared to OPC, there was a good relationship between the curing temperature and the development of strength in BRC.

  • PDF

Evaluation of Bamboo Reinforcements in Structural Concrete Member

  • Siddika, Ayesha;Al Mamun, Md. Abdullah;Siddique, Md. Abu Bakar
    • Journal of Construction Engineering and Project Management
    • /
    • v.7 no.4
    • /
    • pp.13-19
    • /
    • 2017
  • This study is based on the use and performance of bamboo reinforcements in construction of low-cost structures. This study investigated the physical and mechanical properties of bamboo reinforcements. Bamboo reinforced concrete beam specimens were tested with different reinforcement ratios and observed the load capacity, deflection and failure patterns. It was observed that, flexural strength of bamboo reinforced column is sufficient higher than plain cement concrete and comparable to steel reinforced concrete beams. Bamboo reinforced concrete columns with different reinforcement ratio also tested and observed the ultimate compressive strength and failure pattern. It found, all columns failed in a similar pattern due to crushing of concrete. According to cost analysis, bamboo reinforced beams and columns with moderate reinforcement ratio showed the best strength-cost ratio among plain cement concrete and steel reinforced concrete.

Durability Characteristics of Controlled Low-Strength Materials using Bottom Ash (Bottom ash를 함유한 저강도 고유동 재료의 내구성능)

  • 원종필;이용수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1203-1206
    • /
    • 2001
  • The main intent of this research is to determine the feasibility of utilizing bottom ash as CLSM(Controlled Low-strength Materials). The durability tests including permeability, repeated wetting and drying, freezing and thawing for bottom ash CLSM were conducted. Laboratory test results indicated that CLSM using bottom ash has acceptable durability performance.

  • PDF

The Study on the Physical and Strength Properties of Lightweight Concrete by Replacement Ratio of Artificial Lightweight Aggregate (인공경량골재 혼합비율에 따른 경량 콘크리트의 물성 및 강도특성에 관한 연구)

  • Choi, Se-Jin;Kim, Do-Bin;Lee, Kyung-Su;Kim, Young-Uk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.313-322
    • /
    • 2019
  • This study is to compare and analyze the physical and strength properties of lightweight concrete using domestic lightweight aggregate by replacement ratio of artificial lightweight fine and coarse aggregate after considering low cement mixture and pre-wetting time. The slump, unit weight, compressive strength and split tensile strength of lightweight concrete with domestic lightweight aggregate were measured. As test results, the slump of lightweight concrete by replacement ratio of lightweight fine aggregate increased as the replacement ratio of lightweight fine aggregate increased. The unit weight of lightweight concrete using 100% of lightweight fine aggregate was about 10.4% lower than that of the lightweight concrete with natural sand. In addition, the unit weight of lightweight concrete by replacement ratio of lightweight coarse aggregate increased with the increase of the ratio of LWG10(5~10mm). The compressive strength of lightweight concrete with lightweight fine and coarse aggregate increased as the replacement ratio of lightweight fine aggregate increased. The compressive strength of lightweight concrete with natural sand and LWG10 was 30 to 31MPa regardless of the replacement ratio of the lightweight coarse aggregate after 7 days.

Evaluation of Structural Performance of RC Deck Slabs by High-Strength Concrete (고강도 콘크리트를 적용한 RC 바닥판의 정적 성능 평가)

  • Bae, Jae-Hyun;Hwang, Hoon-Hee;Park, Sung-Yong;Joh, Keun-Hee
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.89-95
    • /
    • 2016
  • Lately, the high-strength concrete is often used to increase the lifespan of bridges. The benefits of using the high-strength concrete are that it increases the durability and strength. On the contrary, it reduces the cross-section of the bridges. This study conducted structural performance tests of the bridge deck slabs applying high-strength concrete. As result of the tests, specimens of bridge deck slabs were destroyed through punching shear. Moreover, the tests exposed that the high-strength concrete bridge deck slabs satisfy the flexural strength and the punching shear strength at ultimate limit state(ULS). Also, limiting deflection of the concrete fulfilled serviceability limit state(SLS) criteria. These results indicated that the bridge deck slabs designed by high-strength concrete were enough to secure the safety factor despite of its low thickness.

An Experimental Evaluation of Chloride Content and Chloride Penetration Depth in Concrete by Deicing Agent Type (제설제 종류에 따른 콘크리트 염화물 침투깊이 및 염화물량의 실험적 평가)

  • Lee, Sang-Hyun;Jo, Hong-bum;Kim, Young-Sun;Kim, Kwang-Ki;Ryu, Hwang-Sung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.276-277
    • /
    • 2017
  • Deicing agent affect concrete durability such as scaling, rebar corrosion strength of concrete. In this study, developed deicing agent satisfied with EL610 is evaluated to compare affects to concrete with no deicing agent and chloride-containing deicing agents. Deicing agents are applied to concrete surface during four months twice a week. Chloride content, chloride penetration depth and concrete strength are evaluated. After experiment, chloride content, chloride penetration depth of concrete are as follows. Chloride-containing deicing > Eco friendly deicer > No deicing agents. Concrete strength are also as follows. Chloride-containing deicing > Eco friendly deicer > No deicing agents. From experiment, developed deicing agent shows low chloride content in concrete and affect concrete strength little lower than chloride-containing deicing.

  • PDF

A Study on Physical Properties of Concrete using Admixtures for High Strength Concrete (고강도콘크리트용 혼화재를 사용한 콘크리트의 물성에 관한 연구)

  • 이승한
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.2
    • /
    • pp.155-164
    • /
    • 1995
  • This study was performed to get high strength of the precase concrete adopting a steam curing by using a gypsum-admixture for the high strength concrete. The superplasticizer was used to compensate low slump of base concrete keeping its slump up about $6{\pm}1cm$. To examine the property for strength revelation of concrete using admixtures for a high strength concrete, steam and standard curing were compared each other. Test results were shown that admixtures for high strength concrete were more effective in steam curing than standard curing. On the condition that the unit cement content is about $530{\sim}600kg/m^3$, the compressive strength of concrete replacing by 10% of the admixture was obtained over $65Okgf/cm^2$, which was increased as 1.3 times as that for the nonreplacement. When the admixture was replaced to 15-30%, the compressive strengh was obtained over $700kgf/cm^2$ which was increased as 1.4 - 1.5 times. Therefore, the admixture for high strength concrete, being effective in steam curing, was more efficient to get a high strength concrete using only steam curing instead of an autoclave curing for the secondary products of cement.

Study on the Development of High Strength Admixture using Paper Sludge Ash (제지 애쉬를 사용한 고강도 혼화재 개발에 관한 연구)

  • 이재환;서형남;김창률;민경소
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.87-92
    • /
    • 1998
  • The purpose of this study is to use paper sludge ash as a material in manufacturing high strength admixture. The reactivity of paper sludge ash as iteself is low for the crystallized non-reactive $SiO_2$, but when the $SiO_2$ was removed, the phase component is mainly composed of glass phase which could react with cement hydrates. In this study, we manufactured high strength admixture using separated paper sludge ash, and examined the strength of mortar, spun concrete with and without this high strength admixture in steam curing. The strength of spun concrete with high strength admixture including paper sludge ash was more higher than that of spun concrete without admixture. As a result, it was found that paper sludge ash could be used to a pozzolanic material in manufacturing high strength admixture.

  • PDF

Seismic performance of gravity-load designed concrete frames infilled with low-strength masonry

  • Siddiqui, Umair A.;Sucuoglu, Haluk;Yakut, Ahmet
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.19-35
    • /
    • 2015
  • This study compares the seismic performances of two reinforced concrete frame specimens tested by the pseudo-dynamic procedure. The pair of 3-storey, 3-bay frames specimens are constructed with typical characteristics of older construction which is lacking seismic design. One of the specimens is a bare frame while the other is infilled with low-strength autoclave aerated concrete (AAC) block masonry. The focus of this study is to investigate the influence of low strength masonry infill walls on the seismic response of older RC frames designed for gravity loads. It is found that the presence of weak infill walls considerably reduce deformations and damage in the upper stories while their influence at the critical ground story is not all that positive. Infill walls tend to localize damage at the critical story due to a peculiar frame-infill interaction, and impose larger internal force and deformation demands on the columns and beams bounding the infills. Therefore the general belief in earthquake engineering that infills develop a second line of defence against lateral forces in seismically deficient frames is nullified in case of low-strength infill walls in the presented experimental research.