• Title/Summary/Keyword: low-strength concrete

Search Result 1,248, Processing Time 0.022 seconds

Mechanical Properties of Concrete with Different Curing Temperature (양생온도변화에 따른 콘크리트의 재료역학적 특성)

  • 김진근;한상훈;양은익;조명석;우상균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.117-124
    • /
    • 1997
  • In this study, mechanical properties of type V cement concrete with different curing temperature were investigated. The tests for mechancial properties, i.e., compressive strength and modulus of elasticity, were carried out on two kinds of type V cement concrete mixes. concrete cylinders cured at 10, 23, 35 and 50℃ were tested at 1, 3, 7 and 8 days. The 'rate constant model' was used to described the combined effects of time and temperature on compressive strength development. Test results show that concrete subjected to high temperature at early age attains greater strength than concrete to low temperature but eventually attains lower later-age strength than that. With type V cement concrete, the linear and Arrhenius rate constant models both accurately describe the development of relative strength as afunction of the equivalent age.

  • PDF

Durability Characteristics of Low Strength Fly ash-Cement Composites (저강도 플라이애시-시멘트 복합체의 내구특성)

  • 원종필;신유길;이용수;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.142-147
    • /
    • 2000
  • Durability characteristics of controlled low strength material(flowable fill) with high volume fly ash content was examined. The mix proportions used for flowable fill are selected to obtain low-strength material in the 10 to 15kgf/㎥ range. The optimized flowable fill was consisted of 60kgf/㎥ cement content, 280kgf/㎥ fly ash content, 1400kgf/㎥sand content, and 320kgf/㎥water content. Subsequently, durability tests including permeability warm water immersion, repeated wetting & drying, freezing & thawing for high volume fly ash-flowable fill are conducted The test results indicated that flowable fill has has acceptable durability characteristics.

  • PDF

An Experimental Study on the Mechanical Properties of No-Fines Concrete (No-Fines Concrete의 역학적 특성에 관한 실험적 연구)

  • 홍건호;정일영
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.3
    • /
    • pp.190-200
    • /
    • 1994
  • The purpose of this research is to examine experimentally the mechanical properties and economics of No-fines concrete for its application to the low-rise housing construction. Basic mechanical properties of No fines concrete are studied by measuring of compressive, tensile strength and stress-strain relationship, and economics of it is compared with other materials in unit cost and wall construction cost. From the test results, it can be concluded that No-fines concrete has advantages of good workability, light weight and lower construction cost, even though it has lower strength and modulus of elasticity than normal conc:rt:te does.

Low Carbon Concrete Prepared with Scattering-Filling Coarse Aggregate Process

  • Shen, Weiguo;Zhang, Chuan;Li, Xinling;Shi, Hua;Wang, Guiming;Tian, Xiaowu
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.4
    • /
    • pp.309-313
    • /
    • 2014
  • The volume fraction of the coarse aggregate in the conventional plastic concrete is controlled relatively low to ensure a required workability. In this paper, a new type of coarse aggregate interlocking concrete with strength ranging from C30 to C80 was prepared with scattering-filling aggregate process. The strength of concrete prepared with this method increases obviously whereas the shrinkage decreases significantly, the cement dosage in the concrete decreased 20 % at the same time. The microhardness of the ITZ between the cement paste and scattering-filling aggregate is higher than that of the original aggregate, the ITZ become narrower and tighter also. The interlocking and more even distribution of the coarse aggregate and the water absorption of the addition of extra amount of coarse aggregates contribute to the strength and performance improvement of the concrete prepared with scattering-filling aggregate process.

A Study on the Properties of High Performance Concrete Using Low Heat Portland(Type IV) Cement (저열 포틀랜드(4종)시멘트를 사용한 고유동, 고강도콘크리트에 관한 연구)

  • 최광일;김기수;하재담;김동석;이순기;이동윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.422-429
    • /
    • 1997
  • In recent years, concrete construction have become larger and higher and are demanding high performance concrete with lower heat to prevent thermal cracking, far greater workability, high strength and durability. Application of low heat portland(Type IV) cement for the high performance concrete is the best solution to satisfied those requirements. Here are explained the basic properties of fresh concrete as well as hardened concrete of high performance concrete using low that portland cement.

  • PDF

Experimental Estimation of the Early Strength of Belite Cement Mortar Using Microwave (저열 포틀랜드(4종)시멘트 모르터의 마이크로파를 이용한 조기강도 추정에 관한 실험적 연구)

  • 김민석;박재한;정근호;이종균;이영도;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1077-1082
    • /
    • 2001
  • The most recent building trend is going large, high rise, high strength as overlarge project is developing in domestic construction business. Belite cement has properties like low heat, excellent long term strength, and durability without admixture(fly ash, silica fume). so, Belite cement is suitable for mass structure which is needed high strength, high fluidity and low heat property. This study is to examine the possibility of site adoption microwave-use early strength estimation method. Based on the existed study related the portland cement, the interrelation between Belite cement and microwave-use early strength estimation method is required. In this study, interrelation between mortar and Evaluating strength estimation method is investigated before the concrete experiment.

  • PDF

Evaluating the bond strength between concrete substrate and repair mortars with full-factorial analysis

  • Felekoglu, Kamile Tosun;Felekoglu, Burcu;Tasan, A. Serdar;Felekoglu, Burak
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.651-668
    • /
    • 2013
  • Concrete structures need repairing due to various reasons such as deteriorative effects, overloading, poor quality of workmanship and design failures. Cement based repair mortars are the most widely used solutions for concrete repair applications. Various factors may affect the bond strength between concrete substrate and repair mortars. In this paper, the effects of polymer additives, strength of the concrete substrate, surface roughness, surface wetness and aging on the bond between concrete substrate and repair mortar has been investigated. Full factorial experimental design is employed to investigate the main and interaction effects of these factors on the bond strength. Analysis of variance (ANOVA) under design of experiments (DOE) in Minitab 14 Statistical Software is used for the analysis. Results showed that the interaction bond strength is higher when the application surface is wet and strength of the concrete substrate is comparatively high. According to the results obtained from the analysis, the most effective repair mortar additive in terms of bonding efficiency was styrene butadiene rubber (SBR) within the investigated polymers and test conditions. This bonding ability improvement can be attributed to the self-flowing ability, high flexural strength and comparatively low air content of SBR modified repair mortars. On the other hand, styrene acrylate rubber (SAR) modified mortars was found incompatible with the concrete substrate.

Properties of Low-heat Cement and Concrete (저발열 시멘트 및 콘크리트의 특성)

  • Noh, Jae-Ho;Park, Yon-Dong;Song, Yong-Soon;Kim, Hoon;Kang, Suck-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.345-351
    • /
    • 1996
  • The study on the properties of low-heat cement that hear of hydration is relatively lower than that of ordinary portland cement and concrete made of this low-hear cement has been performed to test the hear of hydration and compressive strength, chemical resistance of concrete using low-hear cement to compare with concrete using other several typers of cements.

  • PDF

A Study on the Repair and Strengthening Effects of Epoxy Grout for the Damaged Concrete Structure (손상된 콘크리트 구조물에 에폭시수지를 이용한 보수·보강효과에 대한 연구)

  • Shin, Sung-Woo;Cho, Tai-Kwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.1
    • /
    • pp.125-132
    • /
    • 1997
  • This study was intended to investigate the effects of epoxy grout on compressive strength for damaged concrete structures. For this purpose, concrete molds were manufactured and tested for compressive strength at 28 days after water curing. Two kinds of Korea-made and one Japan-made epoxy grouts were injected into the broken concrete molds with the automatic low-pressure injecting method or the hand injecting method.

  • PDF

Study on the Fluidity and Strength Properties of High Performance Concrete Utilizing Crushed Sand

  • Park, Sangjun
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.4
    • /
    • pp.231-237
    • /
    • 2012
  • Recently, it has been difficult to get natural sand for concrete due to an insufficient supply in Korea. Crushed sand was thought as a substitute and previous research has been focused on low fluidity and normal compressive strength (24-30 MPa). Study on high performance concrete using crushed sand is hardly found in Korea. In this study it was investigated that the effect of the crushed sand on fluidity and compressive strength properties of high performance concrete. Blending crushed sand (FM: 3.98) produced in Namyangju, Kyunggido and sea sand (FM: 2.80) produced in Asan bay in Chungnam. The final FMs of fine aggregate were 3.50, 3.23, and 3.08. W/B was set as 0.25 to get high performance. With the test results an analysis of relationship was performed using a statistical program. It was shown that strength property of concrete using crushed aggregate at the very early age or after specific time was mainly affected by strength development properties of binders instead of the crushed sand.