• Title/Summary/Keyword: low-rise structures

Search Result 344, Processing Time 0.027 seconds

Dynamic identification of soil-structure system designed by direct displacement-based method for different site conditions

  • Mahmoudabadi, Vahidreza;Bahar, Omid;Jafari, Mohammad Kazem;Safiey, Amir
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.445-458
    • /
    • 2019
  • This study mainly aims to assess the performance of soil-structure systems designed by direct displacement-based method coupled with strong column-weak beam design concept through various system identification techniques under strong ground motions. To this end, various system identification methods are employed to evaluate the dynamic characteristics of a structure (i.e., modal frequency, system damping, mode shapes, and plastic hinge formation pattern) under a strong seismic excitation considering soil-structure interaction for different site conditions as specified by ASCE 7-10. The scope of the study narrowed down to the code-complying low- to high-rise steel moment resisting frames with various heights (4, 8, 12, 16-story). The comparison of the result of soil-structure systems with fix-based support condition indicates that the modal frequencies of these systems are highly influenced by the structure heights, specifically for the softer soils. This trend is more significant for higher modes of the system which can considerably dominate the response of structures in which the higher modes have more contribution in dynamic response. Amongst all studied modes of the vibration, the damping ratio estimated for the first mode is relatively the closet to the initial assumed damping ratios. Moreover, it was found that fewer plastic hinges are developed in the structure of soil-structure systems with a softer soil which contradicts the general expectation of higher damageability of such structural systems.

Fluctuating Pressure Coefficients Distributions for Elliptical Dome Roof (타원형 돔 지붕의 변동풍압특성)

  • Lee, Jong-Ho;Cheon, Dong-Jin;Kim, Yong-Chul;Park, Sang-Woo;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.63-71
    • /
    • 2020
  • The fluctuating wind pressure of the low rise ratio(f/D=0.1) for the elliptical dome roof was analyzed to compare it with the previous studies of circular dome roofs. Wind tunnel test were conducted on a total of 10 wind directions from 0° to 90° while changing wall height-span ratios(H/D=0.1-0.5). For this, meanCP, rmsCP and wind pressure spectrum were analyzed. The analysis result leads to find differences in the shape of the spectra in the spanwise direction and leeward of the elliptical dome according to the wind direction variations of the elliptical dome roof.

Seismic Capacity Evaluation of Existing Medium-and low-rise R/C Frame Retrofitted by H-section Steel Frame with Elastic Pad Based on Pseudo-dynamic testing (유사동적실험에 의한 탄성패드 접합 H형 철골프레임공법으로 보강 된 기존 중·저층 R/C 골조의 내진성능 평가)

  • Kim, Jin-Seon;Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.83-91
    • /
    • 2021
  • In this study, to improve the connection performance between the existing reinforced concrete (R/C) frame and the strengthening member, we proposed a new H-section steel frame with elastic pad (HSFEP) system for seismic rehabilitation of existing medium-to-low-rise reinforced concrete (R/C) buildings. This HSFEP strengthening system exhibits an excellent connection performance because an elastic pad is installed between the existing structure and reinforcing frame. The method shows a strength design approach implemented via retrofitting, to easily increase the ultimate lateral load capacity of R/C buildings lacking seismic data, which exhibit shear failure mechanism. Two full-size two-story R/C frame specimens were designed based on an existing R/C building in Korea lacking seismic data, and then strengthened using the HSFEP system; thus, one control specimen and one specimen strengthened with the HSFEP system were used. Pseudodynamic tests were conducted to verify the effects of seismic retrofitting, and the earthquake response behavior with use of the proposed method, in terms of the maximum response strength, response displacement, and degree of earthquake damage compared with the control R/C frame. Test results revealed that the proposed HSFEP strengthening method, internally applied to the R/C frame, effectively increased the lateral ultimate strength, resulting in reduced response displacement of R/C structures under large scale earthquake conditions.

Effects of Insulation Layer upon the Thermal Behavior of Linear Motors

  • Eun, In-Ung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.896-905
    • /
    • 2003
  • A linear motor has many advantages next to conventional feed mechanisms: high transitional speed and acceleration, high control performance, and good positioning accuracy at high speed. Through the omission of a power transfer element, the linear motor shows no wear and no backlash, has a long lifetime, and is easy to assemble. A disadvantage of the linear motor is low efficiency and resultant high-temperature rise in itself and neighboring structures during operation. This paper presents the thermal behavior of the linear motor as a feed mechanism in machine tools. To improve the thermal behavior, an insulation layer is used. By placing the insulation layer between the primary part and the machine table, both the temperature difference and the temperature fluctuation in the machine table due to a varying motor load are reduced.

Wind tunnel study of wind loading on rectangular louvered panels

  • Zuo, D.;Letchford, C.W.;Wayne, S.
    • Wind and Structures
    • /
    • v.14 no.5
    • /
    • pp.449-463
    • /
    • 2011
  • Drag forces on a rectangular louvered panel, both as a free-standing structure and as a component in a generic low-rise building model, were obtained in a wind tunnel study. When tested in a building model, the porosity ratio of the wall opposite the louvered panel was varied to investigate its effect on the loading of the louvered panel. Both mean and pseudo-steady drag coefficients were obtained. Comparisons with the provisions for porous walls in contemporary loading standards indicate that for some opposite wall porosity ratios, the standards specify significantly different wind loads (larger and smaller) than obtained from this wind tunnel study.

Orifice shape effect of the TLCD system under a low frequency (저주파수 하의 TLCD 시스템의 오리피스 형상 효과)

  • Lim, HeeChang
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.1
    • /
    • pp.30-34
    • /
    • 2014
  • Bluff bodies under the external periodic force vibrate at their own natural or forced frequency. Rectangular bodies or similar structures such as high-rise towers and apartments, and recently a well-cited application - offshore floating bodies, usually needs to reduce these vibrations for stability and the mode control. Therefore, this study is aiming to reduce or control the vibration of a structure by a passive control method, i.e., TLCD (Tuned Liquid Column Damper). Controlling a moving body with a TLCD based on a variety of the orifice shape has been preliminary studied. In order to get a proper control, an optimized study is made on the design of the orifice shape, which has internal plates with the holes. The results show the force acting on the body due to the periodic movement highly depends on the number of holes on the plate and the height of the water level. Therefore, the optimum shape of the orifice and the height of the water level should be confirmed by a series of experiments.

POD Analysis for modeling wind pressures and wind effects of a cylindrical shell roof

  • Li, Fanghui;Chen, Xinzhong
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.559-573
    • /
    • 2020
  • This paper presents a study on the effectiveness of the proper orthogonal decomposition (POD) technique for reconstruction of wind pressure field as applied to a cylindrical shell roof based on simultaneously measured wind pressure data. The influence of wind loading mode truncation on the statistics of dynamic pressures and wind load effects are investigated. The results showed that truncation of higher wind loading modes can have more noticeable influence on the maximum and minimum pressures that the standard derivation (STD) values. The truncation primarily affects the high-frequency content of the pressures. Estimation of background response using wind loading modes is more effective than the use of traditional structural modal analysis.

Characterization of CNT-ink and fabrication of a cold cathode using jet-printing technique.

  • Lee, Dae-Sik;Lim, Seong-Chu;Lee, Young-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1532-1534
    • /
    • 2008
  • Aquesous carbon nanotubes (CNTs) solutions were prepared using SDS (sodium dodecyl sulfonate) and NADDBS (sodium dodecylbenzene sulfonate). Our inks are found to have the viscosity of 1-2 cps. In addition, the surface tension of inks inversely decreased with increasing surfactant concentration and then saturated at critical micelle concentration (CMC). The low surface tension at CMC gave rise to lower contact angles on Indium layers, resulting in larger printable feature sizes. In the fabrication of cold cathode, jet-printing is feasible to modify and scale up the cathode structures. These feasibilities could contribute jet-printing method to be more adaptable for making large-area cold cathodes.

  • PDF

Full-scale study of conical vortices and roof corner pressures

  • Wu, F.;Sarkar, P.P.;Mehta, K.C.
    • Wind and Structures
    • /
    • v.4 no.2
    • /
    • pp.131-146
    • /
    • 2001
  • A full-scale synchronized data acquisition system was set up on the roof of the experimental building at the Texas Tech University Wind Engineering Research Field Laboratory to simultaneously collect approaching wind data, conical vortex images, and roof corner suction pressure data. One-second conditional sampling technique has been applied in the data analysis, which makes it possible to separately evaluate the influencing effects of the horizontal wind angle of attack, ${\theta}$, and the vertical wind angle of attack, ${\varphi}$. Results show a clear cause-and-effect relationship between the incident wind, conical vortices, and the induced roof-corner high-suction pressures. The horizontal wind angle of attack, ${\theta}$, is shown to be the most significant factor in influencing the overall vortex structure and the suction pressures beneath. It is further revealed that the vertical wind angle of attack, ${\varphi}$, plays a critical role in generating the instantaneous peak suction pressures near the roof corner.

Smart Control Techniques for Vibration Suppression of Stay Cable (사장 케이블 제진을 위한 스마트 제진 기법)

  • Jung Hyung-Jo;Park Chul-Min;Cho Sang-Won;Lee In-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.264-271
    • /
    • 2006
  • Stay cables, such as used in cable-stayed bridges, are prone to vibration due to their low inherent damping characteristics. It has been reported that a semiactive control system using MR dampers could potentially achieve both the better performance compared to a passive control system and the adaptability with few of the detractions. However, a control system including a power supply, a controller and sensors is required to improve the control performance of MR dampers. This complicated control system is not effective to most of large civil structures such as long-span bridges and high-rise buildings. This paper proposes a smart damping system which consists of an MR damper and the electromagnetic induction (EMI) part that is considered as an external power source to the MR damper. The control performance of the proposed damping system has been compared with that of the passive-type control systems employing an MR damper and a linear viscous damper.

  • PDF