• Title/Summary/Keyword: low-rise buildings

Search Result 390, Processing Time 0.025 seconds

Study on the Control Performance Evaluation of the Exhaust Stack used in High Riser Public House (초고층공동주택 국소배기용 입상덕트시스템의 제어성능평가에 관한 연구)

  • Kwon, Yong-Il;Ahn, Jung-Hun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.2
    • /
    • pp.103-108
    • /
    • 2009
  • Local exhaust system used in toilet and cooking place of low-rise public house installed roof ventilator at terminal of stack. There are many high riser public houses in Korea. These buildings were not viewed as being major contributors to exhaust pollutants producted in indoor. It was because many engineers thought that exhaust in high riser public house depends on stack effect. But Neutral pressure level represents in a terminal of stack with air tightness for the best exhaust efficiency. Thereby, lower floors have the worst indoor air quality. This paper focuses mainly on the exhaust efficiency improved by roof fan with motor installed in high riser public house. It is observed there is higher exhaust efficiency than the existing natural roof ventilator.

Development of State Assessment System of Low-Rise Reinforced Concrete Buildings to Remodeling (리모델링을 위한 기존 저층형 콘크리트 구조물의 상태평가시스템 개발)

  • Kim, Jin-Soo;Kim, Chang-Eun
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.115-123
    • /
    • 2003
  • Remodeling is not subject to strict laws or regulations for permission procedure and structure safety inspection compared with new construction. Most of building owners do not recognize the importance of structural safety enough and place an order to small unlicensed construction company. As a result, important structural materials are damaged without enough investigation into permitted durability and fixed weight and load weight increase. This study suggests a system that can evaluate the state of the building and enables fast judgment on needs of repairing or strengthening as well as needs structural examination.

Influence of wind disturbance on smart stiffness identification of building structure using limited micro-tremor observation

  • Koyama, Ryuji;Fujita, Kohei;Takewaki, Izuru
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.293-315
    • /
    • 2015
  • While most of researches on system identification of building structures are aimed at finding modal parameters first and identifying the corresponding physical parameters by using the transformation in terms of transfer functions and cross spectra, etc., direct physical parameter system identification methods have been proposed recently. Due to the problem of signal/noise (SN) ratios, the previous methods are restricted mostly to earthquake records or forced vibration data. In this paper, a theoretical investigation is performed on the influence of wind disturbances on stiffness identification of building structures using micro-tremor at limited floors. It is concluded that the influence of wind disturbances on stiffness identification of building structures using micro-tremor at limited floors is restricted in case of using time-series data for low-rise buildings and does not cause serious problems.

Effect of a vertical guide plate on the wind loading of an inclined flat plate

  • Chung, Kung-Ming;Chou, Chin-Cheng;Chang, Keh-Chin;Chen, Yi-Jun
    • Wind and Structures
    • /
    • v.17 no.5
    • /
    • pp.537-552
    • /
    • 2013
  • Wind tunnel experiments were performed to study the wind loads on an inclined flat plate with and without a guide plate. Highly turbulent flow, which corresponded to free-stream turbulence intensity on the flat roof of low-rise buildings, was produced by a turbulence generation grid at the inlet of the test section. The test model could represent a typical solar collector panel of a solar water heater. There are up-stream movements of the separation bubble and side-edge vortices, more intense fluctuating pressure and a higher bending moment in the turbulent flow. A guide plate would result in higher lift coefficient, particularly with an increased projected area ratio of a guide plate to an inclined flat plate. The value of lift coefficient is considerably lower with increased free-stream turbulent intensity.

Evaluation of local and global ductility relationships for seismic assessment of regular masonry-infilled reinforced concrete frames using a coefficient-based method

  • Su, R.K.L.;Tang, T.O.;Lee, C.L.
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.1-22
    • /
    • 2013
  • Soft storey failure mechanism is a common collapse mode for masonry-infilled (MI) reinforced concrete (RC) buildings subjected to severe earthquakes. Simple analytical equations correlating global with local ductility demands are derived from pushover (PO) analyses for seismic assessments of regular MI RC frames, considering the critical interstorey drift ratio, number of storeys and lateral loading configurations. The reliability of the equations is investigated using incremental dynamic analyses for MI RC frames of up to 7 storeys. Using the analytical ductility relationship and a coefficient-based method (CBM), the response spectral accelerations and period shift factors of low-rise MI RC frames are computed. The results are verified through published shake table test results. In general applications, the analytical ductility relationships thus derived can be used to bypass the onerous PO analysis while accurately predicting the local ductility demands for seismic assessment of regular MI RC frames.

Bamboo Architecture: Structure, Construction and Space: Part 1

  • Vo Trong Nghia
    • International Journal of High-Rise Buildings
    • /
    • v.13 no.2
    • /
    • pp.113-145
    • /
    • 2024
  • Bamboo is seen as a low cost, lightweight, widely available and environmental-friendly material. In Vietnam, it also connects deeply to our culture. However, it wasn't seen as a viable material for large structures before VTN Architects. Furthermore, Vietnamese cities are facing the same environmental problems as many developing metropolises in the world. Globally, climate change is a serious issue. The need for sustainable construction material is clear. The increasing development of eco-tourism in Vietnam and Asia is also a background. These become the background to the foundation and the development of bamboo architecture by VTN Architects. The journal analyses our development of bamboo construction, joints, structures, and how to use them to realise space and to create eco-friendly architecture. We will talk about our process of bamboo procurement, our construction methods, our unique joint system, how we make a frame unit and how we construct VTN bamboo structures from units.

Internal and net roof pressures for a dynamically flexible building with a dominant wall opening

  • Sharma, Rajnish N.
    • Wind and Structures
    • /
    • v.16 no.1
    • /
    • pp.93-115
    • /
    • 2013
  • This paper describes a study of the influence of a dynamically flexible building structure on pressures inside and net pressures on the roof of low-rise buildings with a dominant opening. It is shown that dynamic interaction between the flexible roof and the internal pressure results in a coupled system that is similar to a two-degree-of-freedom mechanical system consisting of two mass-spring-damper systems with excitation forces acting on both the masses. Two resonant modes are present, the natural frequencies of which can readily be obtained from the model. As observed with quasi-static building flexibility, the effect of increased dynamic flexibility is to reduce the first natural frequency as well as the corresponding peak value of the admittance, the latter being the result of increased damping effects. Consequently, it is found that the internal and net roof pressure fluctuations (RMS coefficients) are also reduced with dynamic flexibility. This model has been validated from experiments conducted using a cylindrical model with a leeward end flexible diaphragm, whereby good match between predicted and measured natural frequencies, and trends in peak admittances and RMS responses with flexibility, were obtained. Furthermore, since significant differences exist between internal and net roof pressure responses obtained from the dynamic flexibility model and those obtained from the quasi-static flexibility model, it is concluded that the quasi-static flexibility assumption may not be applicable to dynamically flexible buildings. Additionally, since sensitivity analyses reveal that the responses are sensitive to both the opening loss coefficient and the roof damping ratio, careful estimates should therefore be made to these parameters first, if predictions from such models are to have significance to real buildings.

Human-Induced Vibrations in Buildings

  • Wesolowsky, Michael J.;Irwin, Peter A.;Galsworthy, Jon K.;Bell, Andrew K.
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.1
    • /
    • pp.15-19
    • /
    • 2012
  • Occupant footfalls are often the most critical source of floor vibration on upper floors of buildings. Floor motions can degrade the performance of imaging equipment, disrupt sensitive research equipment, and cause discomfort for the occupants. It is essential that low-vibration environments be provided for functionality of sensitive spaces on floors above grade. This requires a sufficiently stiff and massive floor structure that effectively resists the forces exerted from user traffic. Over the past 25 years, generic vibration limits have been developed, which provide frequency dependent sensitivities for wide classes of equipment, and are used extensively in lab design for healthcare and research facilities. The same basis for these curves can be used to quantify acceptable limits of vibration for human comfort, depending on the intended occupancy of the space. When available, manufacturer's vibration criteria for sensitive equipment are expressed in units of acceleration, velocity or displacement and can be specified as zero-to-peak, peak-to-peak, or root-mean-square (rms) with varying frequency ranges and resolutions. Several approaches to prediction of floor vibrations are currently applied in practice. Each method is traceable to fundamental structural dynamics, differing only in the level of complexity assumed for the system response, and the required information for use as model inputs. Three commonly used models are described, as well as key features they possess that make them attractive to use for various applications. A case study is presented of a tall building which has fitness areas on two of the upper floors. The analysis predicted that the motions experienced would be within the given criteria, but showed that if the floor had been more flexible, the potential exists for a locked-in resonance response which could have been felt over large portions of the building.

Seismic Responses of Wall-Slab Apartment Building Structures Built on the Soft Soil Layer Considering the Stiffnesses of a Foundation-Soil System (연약지반의 기초지반강성을 고려한 벽식구조 아파트의 지진응답)

  • 김지원;김용석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.19-27
    • /
    • 2001
  • In this seismic analyses of structures, it is well recognized that the effects of soil-structure interaction can not be ignored and seismic responses of a structure taking into account the stiffnesses of a foundation-soil system show the significant difference from those with a rigid base. However, current seismic analyses of apartment building structures were carried out with the rigid base ignoring the characteristics of the foundation and the properties of the underlying soil. In this study, seismic analyses of wall-slob type apartment buildings which have a particular structural type were carried out taking into account the soft soil layer comparing seismic response spectra of a flexible base with those of a rigid base and UBC-97. Low-rise or middle height wall-slab type apartment buildings built on the deep soft soil layer showed a rigid body motion with the reduced seismic responses due to the base isolation effect, indicating that it is considerably safe but uneconomical to utilize the design spectra of UB-97 for the seismic design of wall-slab type apartment buildings due to conservative design.

  • PDF

Damage Potential Analysis and Earthquake Engineering-related Implications of Sep.12, 2016 M5.8 Gyeongju Earthquake (2016년 9월 12일 M5.8 경주지진의 데미지 포텐셜 분석 및 내진공학 측면의 시사점)

  • Lee, Cheol Ho;Park, Ji-Hun;Kim, Taejin;Kim, Sung-Yong;Kim, Dong-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.527-536
    • /
    • 2016
  • This paper investigates seismic damage potential of recent September 12 M5.8 Gyeongju earthquake from diverse earthquake engineering perspectives using the accelerograms recorded at three stations near the epicenter. In time domain, strong motion durations are evaluated based on the accelerograms and compared with statistical averages of the ground motions with similar magnitude, epicentral distance and soil conditions, while Fourier analysis using FFT is performed to identify damaging frequency contents contained in the earthquake. Effective peak ground accelerations are evaluated from the calculated response spectra and compared with apparent peak ground accelerations and the design spectrum in KBC 2016. All these results are used to consistently explain the reason why most of seismic damage in the earthquake was concentrated on low-rise stiff buildings but not quite significant. In order to comparatively appraise the damage potential, the constant ductility spectrum constructed from the Gyeongju earthquake is compared with that of the well-known 1940 El Centro earthquake. Deconvolution analysis by using one accelerogram speculated to be recorded at a stiff soil site is also performed to estimate the soil profile conforming to the response spectrum characteristics. Finally, response history analysis for 39- and 61-story tall buildings is performed as a case study to explain significant building vibration felt on the upper floors of some tall buildings in Busan area during the Gyeongju earthquake. Seismic design and retrofit implications of M5.8 Gyeongju earthquake are summarized for further research efforts and improvements of relevant practice.