디지털 카메라의 발전으로 인해 점차 영상을 사용한 철도의 안전관리기법이 그 사용범위를 넓히고 있다. 그러나 선로의 특성상 많은 저조도 환경에서의 영상 취득 과정에서는 심한 잡음이 영상의 화질을 떨어뜨릴 뿐만 아니라 추가적인 영상처리의 오류를 발생시킨다. 최근의 3D 잡음제거 방식은 시간적으로 연속된 영상간의 픽셀을 참조함으로 2D 잡음제거보다 더 나은 잡음 제거 결과를 얻을 수 있으나 움직임 부분에서는 오히려 모션 블러와 같은 열화가 나타나게 된다. 본 논문에서는 저조도 영상에서 적응적 가중평균필터를 이용하여 보다 정확한 움직임 검출을 구현하며, 3D 잡음제거 방식에 2D잡음 제거 방식의 결과를 적응적으로 사용하여 객관적 화질과 주관적 화질을 개선하였다.
카메라 영상은 명도의 변화와 부정확한 초점으로 인해 스캐너 영상에 비하여 화질이 저하된다. 본 연구에서는 카메라 영상에서 자주 발생하는 화질 저하에 대한 적응력을 강화하여 카메라기반 문서 인식에 적합한 이진화 방법을 제안한다. 기존의 평가에서 우수하다고 보고된 이진화 방법을 기반으로 하되, 낮은 조도와 부정확한 초점으로 인해 명도 대비가 낮은 영상에 대한 적응력을 강화하였다. 또한 이진화 시 국소 윈도우를 이용하여 기존의 방법에서 뭉개지기 쉬운 문자의 세부 구조를 섬세하게 추출하도록 개선하였다. 실험에서는 기존에 우수하다고 평가된 이진화 방법들과 제안하는 방법을 문서 인식에 적용하여 다양한 카메라 문서 영상에 대한 성능을 비교하였는데, 그 결과 제안하는 방법이 카메라로 입력받은 문서 영상의 인식에 효과적임을 확인하였다.
This study investigates how the physical attractiveness of salespeople and other customers and self-image congruence influence customer perception and brand attitude. As a result of a pretest, four types of pictorial stimuli were developed: physical attractiveness of salespeople (high/low) ${\times}$ that of other customers (high/low). Stimuli were developed using Photoshop CS. A total of 550 samples in two experiments were used and all respondents were women in their 20s and 30s. Data were analyzed using ANOVA and SEM. The result of analysis shows that the physical attractiveness of salesperson had a significant impact on perceived quality, but that of other customers did not. However, self-image congruence with other customers shows a significant effect on perceived quality; however, salespeople did not. The impact of the perceived product quality on brand attitude is higher than perceived service quality. This study adds to fashion retailing literature by demonstrating that physical attractiveness and self-image congruence can influence a customers' perception of product or service quality and brand attitude. It provides interesting insight into how retailers can use social factors as a strategic tool in a retail setting.
영상 해상도 개선은 저해상도 획득 영상의 해상도를 개선하여 고해상도 영상을 생성하는 기술이다. 영상 해상도 개선을 위해서는 저해상도 획득 영상의 열화 과정에서 발생하는 손실된 화소 정보를 정확하게 추정하는 것이 중요하다. 따라서 본 논문에서는 영상 해상도 개선을 위한 다중 부족분 추정 방법을 제안한다. 제안하는 방법은 획득 영상의 부영상 집합에 알려진 열화 및 복원 과정을 수행하여 서로 다른 형태의 다중 부족분을 추정하고, 추정된 부족분과 획득 영상의 보간 영상의 결합을 통해서 결과 영상을 생성하고, 디블러링을 수행하여 최종 복원 영상을 생성한다. 객관적 화질 측정 지표인 PSNR, SSIM, FSIM으로 비교한 결과 제안한 방법이 보간만을 사용하는 방법들보다 높은 값을 가지는 것을 확인하였다. 또한 결과 영상의 시각적 비교 결과 주관적 관점의 화질도 가장 뛰어난 것을 알 수 있었고, 보간만을 사용하는 방법들보다 빠른 계산시간을 가지는 것을 확인할 수 있었다. 제안하는 방법은 영상 해상도 개선을 위한 응용 환경에서 유용하게 사용될 수 있다.
Rahman, Sumiaya;Moon, Yong-Jae;Park, Eunsu;Cho, Il-Hyun;Lim, Daye
천문학회보
/
제44권2호
/
pp.70.4-70.4
/
2019
Image super-resolution (SR) is a technique that enhances the resolution of a low resolution image. In this study, we use three SR models (RCAN, ProSRGAN and Bicubic) for enhancing solar SDO/HMI magnetograms using deep learning. Each model generates a high resolution HMI image from a low resolution HMI image (4 by 4 binning). The pixel resolution of HMI is about 0.504 arcsec. Deep learning networks try to find the hidden equation between low resolution image and high resolution image from given input and the corresponding output image. In this study, we trained three models with HMI images in 2014 and test them with HMI images in 2015. We find that the RCAN model achieves higher quality results than the other two methods in view of both visual aspects and metrics: 31.40 peak signal-to-noise ratio(PSNR), Correlation Coefficient (0.96), Root mean square error (RMSE) is 0.004. This result is also much better than the conventional bi-cubic interpolation. We apply this model to a full-resolution SDO/HMI image and compare the generated image with the corresponding Hinode NFI magnetogram. As a result, we get a very high correlation (0.92) between the generated SR magnetogram and the Hinode one.
Underwater optical images face various limitations that degrade the image quality compared with optical images taken in our atmosphere. Attenuation according to the wavelength of light and reflection by very small floating objects cause low contrast, blurry clarity, and color degradation in underwater images. We constructed an image data of the Korean sea and enhanced it by learning the characteristics of underwater images using the deep learning techniques of CycleGAN (cycle-consistent adversarial network), UGAN (underwater GAN), FUnIE-GAN (fast underwater image enhancement GAN). In addition, the underwater optical image was enhanced using the image processing technique of Image Fusion. For a quantitative performance comparison, UIQM (underwater image quality measure), which evaluates the performance of the enhancement in terms of colorfulness, sharpness, and contrast, and UCIQE (underwater color image quality evaluation), which evaluates the performance in terms of chroma, luminance, and saturation were calculated. For 100 underwater images taken in Korean seas, the average UIQMs of CycleGAN, UGAN, and FUnIE-GAN were 3.91, 3.42, and 2.66, respectively, and the average UCIQEs were measured to be 29.9, 26.77, and 22.88, respectively. The average UIQM and UCIQE of Image Fusion were 3.63 and 23.59, respectively. CycleGAN and UGAN qualitatively and quantitatively improved the image quality in various underwater environments, and FUnIE-GAN had performance differences depending on the underwater environment. Image Fusion showed good performance in terms of color correction and sharpness enhancement. It is expected that this method can be used for monitoring underwater works and the autonomous operation of unmanned vehicles by improving the visibility of underwater situations more accurately.
Purpose: This study was to measure the quality of life(QOL) and to identify the related factors in gynecological cancer patients during chemotherapy. Method: The subjects of this study were the patients who had undergone a hysterectomy and were admitted for chemotherapy at S university hospital between November 2006 and April 2007. Data was collected from 106 gynecological cancer patients with the use of a structured questionnaire which measured the QOL(FACT-G), body image, the presence of anxiety & depression, uncertainty, and family support. The data was analyzed by the SPSS win 12.0 program. Results: The mean FACT-total score was 62.1$({\pm}16.7)$ (range; 26-107). Positive correlations were found between QOL and body image(r= .67, p= .00), and QOL and family support(r= .32, p= .00), whereas there were negative correlations between QOL and anxiety(r= -.54, p= .00), QOL and depression(r= -.70, p= .00), and QOL and uncertainty(r= -.59, p= .00). Fifty seven pre cent of the variance in subjective overall QOL can be explained by depression, body image, and uncertainty(Adj $R^2$= .57, F=47.00, p= .00). Conclusion: Our patients had a relatively low QOL score. Factors significantly affecting quality of life were depression, body image and uncertainty. Nursing interventions, therefore, should be focused on improving QOL in gynecological cancer patients during chemotherapy, particularly so in patients with depression, uncertainty or poor body image.
The objectives of this study are to develope sensibility image scales for Korean traditional motifs by quantitatively measuring their images and preference and to classify them into clusters. Data were collected via a questionnaire from seven hundred twenty five Korean undergraduate students. Re experimental materials were forty eight stimuli of Korean traditional motifs with different categories, interpretation types, composition types, and application objects. The instruments consisted of 7-point polar semantic differential scales of twenty three bipolar adjectives including preference. Data were analyzed by correspondence analysis, cluster analysis, ANOVA and Duncan's multiple range test. Re major results are as follows; image scales for textile patterns and dress designs using Korean traditional motifs were constructed. The axes of sensibility image scales for both textile patterns and dress designs were defined by quality level and degree of simplicity. Second, four clusters on the scale of textile patterns and two clusters on the scale dress designs were identified. Third, in the case of textile Patterns, the preferred cluster had high-quality and classical images, while the cluster that was not preferred had a complex image. In the case of dress designs, the preferred cluster had simple and high-quality images, while the cluster that was not preferred had complex and low-quality images.
To improve the effect of image restoration and solve the image detail loss, an image dehazing enhancement algorithm based on mean guided filtering is proposed. The superpixel calculation method is used to pre-segment the original foggy image to obtain different sub-regions. The Ncut algorithm is used to segment the original image, and it outputs the segmented image until there is no more region merging in the image. By means of the mean-guided filtering method, the minimum value is selected as the value of the current pixel point in the local small block of the dark image, and the dark primary color image is obtained, and its transmittance is calculated to obtain the image edge detection result. According to the prior law of dark channel, a classic image dehazing enhancement model is established, and the model is combined with a median filter with low computational complexity to denoise the image in real time and maintain the jump of the mutation area to achieve image dehazing enhancement. The experimental results show that the image dehazing and enhancement effect of the proposed algorithm has obvious advantages, can retain a large amount of image detail information, and the values of information entropy, peak signal-to-noise ratio, and structural similarity are high. The research innovatively combines a variety of methods to achieve image dehazing and improve the quality effect. Through segmentation, filtering, denoising and other operations, the image quality is effectively improved, which provides an important reference for the improvement of image processing technology.
본문에서는 Discrete Wavelet Transform(DWT)를 기반으로 한 워터마킹 알고리즘을 제안하였다. 제안한 방법은 원 영상을 네 개의 영상으로 분할하고, 각 분할된 영상들을 2단계 DWT한다. 네 개의 DWT된 영상 중 하나의 영상에 에지 테이블(Edge Table) 이라는 새로운 개념으로 영상의 고유한 에지 특성을 고려해 워터마크를 삽입하였다. 워터마크 추출 시에는 워터마크가 삽입된 한 개의 분할 영상과 나머지 분할 영상들을 비교하여 원 영상 없이 워터마크를 추출하였다. 기존의 Blind 워터마킹의 문제점 중의 하나인 명암이 급격히 변하는 에지 영역에서의 부정확한 추정을 본 논문에서는 에지 테이블을 사용하여 극복하였다. 뿐만 아니라, 저주파(Low frequency) 영역에 워터마크를 삽입하여, 영상의 품질(Quality)를 유지하였고, 영상의 평가 방법인 PSNR 테스트 및 인간의 눈에서 느껴지는 주관적인 화질도 향상됨을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.