• Title/Summary/Keyword: low-order surface methods

Search Result 146, Processing Time 0.033 seconds

Temperature Modifies the Association between PM10 and Mortality in Seoul (서울시 미세먼지(PM10)로 인한 사망영향에 대한 기온의 수정효과)

  • Bae, Hyun-Joo;Lim, Yu-Ra;Yu, Seung Do;Kim, Joung Hwa;Cho, Yong-Sung
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.90-98
    • /
    • 2013
  • Objectives: Many studies have shown that air pollution and temperature have adverse effects on mortality and morbidity. But the interactive effect between air pollution and temperature on mortality has been rarely investigated. This study aims to explore whether temperature modifies the associations between ambient particulate matter less than $10{\mu}m$ in diameter ($PM_{10}$) and mortality in Seoul, Korea. Methods: The time-series analysis examined the effect of the interaction between $PM_{10}$ and temperature on mortality from 1999 to 2010 in Seoul. In order to examine the interactive effect between $PM_{10}$ and temperature on mortality, we fitted a response surface model controlling the time-trends and meteorological variables. The effects of $PM_{10}$ were stratified by temperature stratum to quantitatively estimate the $PM_{10}$-health outcome associations. Results: When temperature was low (below the threshold temperature), the percentage increases per $10{\mu}g/m^3$ increase of $PM_{10}$ increased 0.38% (95% Confidence Interval[CI]: 0.09~0.68%) and 0.31% (95% CI: - 0.07~0.68%) of mortality in the all age group and ${\geq}65$ year age group, respectively. When temperature was high (above the threshold temperature), the percentage increases per $10{\mu}g/m^3$ increase of $PM_{10}$ increased 1.09% (95% CI: 0.47~1.72%) and 1.35% (95% CI: 0.65~2.06%) for mortality in the all age group and ${\geq}65$ year age group, respectively. Conclusion: The results of this study showed strong modification by temperature in the association between $PM_{10}$ and mortality. We recommend that public health strategies to minimize adverse health impact of heat and $PM_{10}$ should be considered in control and prevention measures for air pollution and weather-related health impacts.

Magnetoresistance of Bi Nanowires Grown by On-Film Formation of Nanowires for In-situ Self-assembled Interconnection

  • Ham, Jin-Hee;Kang, Joo-Hoon;Noh, Jin-Seo;Lee, Woo-Young
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2010.06a
    • /
    • pp.79-79
    • /
    • 2010
  • Semimetallic bismuth (Bi) has been extensively investigated over the last decade since it exhibits very intriguing transport properties due to their highly anisotropic Fermi surface, low carrier concentration, long carrier mean free path l, and small effective carrier mass $m^*$. In particular, the great interest in Bi nanowires lies in the development of nanowire fabrication methods and the opportunity for exploring novel low-dimensional phenomena as well as practical application such as thermoelectricity[1]. In this work, we introduce a self-assembled interconnection of nanostructures produced by an on-film formation of nanowires (OFF-ON) method in order to form a highly ohmic Bi nanobridge. A Bi thin film was first deposited on a thermally oxidized Si (100) substrate at a rate of $40\;{\AA}/s$ by radio frequency (RF) sputtering at 300 K. The sputter system was kept in an ultra high vacuum (UHV) of $10^{-6}$ Torr before deposition, and sputtering was performed under an Ar gas pressure of 2m Torr for 180s. For the lateral growth of Bi nanowires, we sputtered a thin Cr (or $SiO_2$) layer on top of the Bi film. The Bi thin films were subsequently put into a custom-made vacuum furnace for thermal annealing to grow Bi nanowires by the OFF-ON method. After thermal annealing, the Bi nanowires cannot be pushed out from the topside of the Bi films due to the Cr (or $SiO_2$) layer. Instead, Bi nanowires grow laterally as a mean s of releasing the compressive stress. We fabricated a self-assembled Bi nanobridge (d=192 nm) device in-situ using OFF-ON through annealing at $250^{\circ}C$ for 10hours. From I-V measurements taken on the Bi nanobridge device, contacts to the nanobridge were found highly ohmic. The quality of the Bi nanobridge was also proved by the high MR of 123% obtained from transverse MR measurements. These results manifest the possibility of self-assembled nanowire interconnection between various nanostructures for a variety of applications and provide a simple device fabrication method to investigate transport properties on nanowires without complex patterning and etching processes.

  • PDF

Size measurement of electrosprayed droplets using shadowgraph visualization method (Shadowgraph 가시화 기법을 활용한 정전분무액적의 크기 측정)

  • Oh, Min-Jeong;Kim, Sung-Hyun;Lee, Myong-Hwa
    • Particle and aerosol research
    • /
    • v.13 no.4
    • /
    • pp.151-158
    • /
    • 2017
  • Electrostatic precipitator is widely used to remove particulate matters in indoor air and industrial flue gas due to low pressure drop and high collection efficiency. However, it has a low collection efficiency for the submicrometer sized particles. Electrospraying is a potential method to increase the particle charging efficiency, which results in increased collection efficiency. Although particle charging efficiency is highly dependent upon droplet size, the effective measuring method of the droplets is still uncertain. Tap water was electrosprayed in this study, and the images of electrosprayed droplets were taken with a high speed camera coupled with several visualization methods in order to measure the droplets size. The droplet size distribution was determined by an image processing with an image-J program. As a result, a droplet measured by a laser visualization, had a half size of that by a Xenon light visualization. In addition, the experimentally measured droplet sizes were a good agreement with the predicted values suggested by $Fern{\acute{a}}ndez$ de la Mora and Loscertales(1994).

Development of the Calcium Alginate Bead Immobilized with $TiOSO_4$ for the Efficient Removal of Phosphorous (Phosphorous의 효율적인 제거를 위한 $TiOSO_4$ 고정화 Calcium Alginate Bead의 제조기법에 관한 연구)

  • Choi, Jae-Woo;Lee, Seung-Yeon;Chung, Seung-Gun;Lee, Sang-Hyup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.3
    • /
    • pp.162-166
    • /
    • 2011
  • Phosphorous contaminated in the effluent from sewage treatment plants can cause the eutrophication in surface water bodies. In this study, a powder of titanium oxysulfate-sulfuric acid made of ion-exchange materials was immobilized in an alginate gel and this material was examined to evaluate its phosphorous removal efficiency. Equilibrium and kinetic studies were carried out to quantify the adsorption capacity and time dependent removal rate of phosphorous. Adsorption isotherms and kinetic parameters were obtained for the entrapped titanium beads with three different methods. Equilibrium data were analyzed using Langmuir adsorption isotherm model and found to be well fitted to the model. The maximum adsorption capacity for phosphorous by the titanium bead synthesized with the solution method was 92.26 mg/g. Kinetic data followed a pseudo-second-order kinetic model. Due to the low production cost and high adsorption capacity, the titanium bead synthesized by the solution method has a potential to be utilized for the cost-effective removal of phosphorous from wastewater.

On the Solution Method for the Non-uniqueness Problem in Using the Time-domain Acoustic Boundary Element Method (시간 영역 음향 경계요소법에서의 비유일성 문제 해결을 위한 방법에 관하여)

  • Jang, Hae-Won;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.19-28
    • /
    • 2012
  • The time-domain solution from the Kirchhoff integral equation for an exterior problem is not unique at certain eigen-frequencies associated with the fictitious internal modes as happening in frequency-domain analysis. One of the solution methods is the CHIEF (Combined Helmholtz Integral Equation Formulation) approach, which is based on employing additional zero-pressure constraints at some interior points inside the body. Although this method has been widely used in frequency-domain boundary element method due to its simplicity, it was not used in time-domain analysis. In this work, the CHIEF approach is formulated appropriately for time-domain acoustic boundary element method by constraining the unknown surface pressure distribution at the current time, which was obtained by setting the pressure at the interior point to be zero considering the shortest retarded time between boundary nodes and interior point. Sound radiation of a pulsating sphere was used as a test example. By applying the CHIEF method, the low-order fictitious modes could be damped down satisfactorily, thus solving the non-uniqueness problem. However, it was observed that the instability due to high-order fictitious modes, which were beyond the effective frequency, was increased.

Trend in Research and Application of Hard Carbon-based Thin Films (탄소계 경질 박막의 연구 및 산업 적용 동향)

  • Lee, Gyeong-Hwang;Park, Jong-Won;Yang, Ji-Hun;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.111-112
    • /
    • 2009
  • Diamond-like carbon (DLC) is a convenient term to indicate the compositions of the various forms of amorphous carbon (a-C), tetrahedral amorphous carbon (ta-C), hydrogenated amorphous carbon and tetrahedral amorphous carbon (a-C:H and ta-C:H). The a-C film with disordered graphitic ordering, such as soot, chars, glassy carbon, and evaporated a-C, is shown in the lower left hand corner. If the fraction of sp3 bonding reaches a high degree, such an a-C is denoted as tetrahedral amorphous carbon (ta-C), in order to distinguish it from sp2 a-C [2]. Two hydrocarbon polymers, that is, polyethylene (CH2)n and polyacetylene (CH)n, define the limits of the triangle in the right hand corner beyond which interconnecting C-C networks do not form, and only strait-chain molecules are formed. The DLC films, i.e. a-C, ta-C, a-C:H and ta-C:H, have some extreme properties similar to diamond, such as hardness, elastic modulus and chemical inertness. These films are great advantages for many applications. One of the most important applications of the carbon-based films is the coating for magnetic hard disk recording. The second successful application is wear protective and antireflective films for IR windows. The third application is wear protection of bearings and sliding friction parts. The fourth is precision gages for the automotive industry. Recently, exciting ongoing study [1] tries to deposit a carbon-based protective film on engine parts (e.g. engine cylinders and pistons) taking into account not only low friction and wear, but also self lubricating properties. Reduction of the oil consumption is expected. Currently, for an additional application field, the carbon-based films are extensively studied as excellent candidates for biocompatible films on biomedical implants. The carbon-based films consist of carbon, hydrogen and nitrogen, which are biologically harmless as well as the main elements of human body. Some in vitro and limited in vivo studies on the biological effects of carbon-based films have been studied [$2{\sim}5$].The carbon-based films have great potentials in many fields. However, a few technological issues for carbon-based film are still needed to be studied to improve the applicability. Aisenberg and Chabot [3] firstly prepared an amorphous carbon film on substrates remained at room temperature using a beam of carbon ions produced using argon plasma. Spencer et al. [4] had subsequently developed this field. Many deposition techniques for DLC films have been developed to increase the fraction of sp3 bonding in the films. The a-C films have been prepared by a variety of deposition methods such as ion plating, DC or RF sputtering, RF or DC plasma enhanced chemical vapor deposition (PECVD), electron cyclotron resonance chemical vapor deposition (ECR-CVD), ion implantation, ablation, pulsed laser deposition and cathodic arc deposition, from a variety of carbon target or gaseous sources materials [5]. Sputtering is the most common deposition method for a-C film. Deposited films by these plasma methods, such as plasma enhanced chemical vapor deposition (PECVD) [6], are ranged into the interior of the triangle. Application fields of DLC films investigated from papers. Many papers purposed to apply for tribology due to the carbon-based films of low friction and wear resistance. Figure 1 shows the percentage of DLC research interest for application field. The biggest portion is tribology field. It is occupied 57%. Second, biomedical field hold 14%. Nowadays, biomedical field is took notice in many countries and significantly increased the research papers. DLC films actually applied to many industries in 2005 as shown figure 2. The most applied fields are mold and machinery industries. It took over 50%. The automobile industry is more and more increase application parts. In the near future, automobile industry is expected a big market for DLC coating. Figure 1 Research interests of carbon-based filmsFigure 2 Demand ratio of DLC coating for industry in 2005. In this presentation, I will introduce a trend of carbon-based coating research and applications.

  • PDF

PEKK(Polyetherketoneketone) Surface Treatment Effects on Shear Bond Strength to Dental Veneering Resin (PEKK(Polyetherketoneketone) 표면처리가 치과용 베니어 레진의 전단결합강도에 미치는 영향)

  • Moon, Yun-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.93-99
    • /
    • 2019
  • The purpose of this study was to investigate the bond strength between PEKK(Polyetherketoneketone) and Sinfony(3M ESPE, Seefeld, Germany) the dental composite resin by proposing the three representative surface treatment methods and evaluate to see if they affect the bond strength between two materials. A total of 30 PEKK($Pekkton^{(R)}$ Ivory, $Cendres+M{\acute{e}}taux$, Bienne, Switzerland) specimens were prepared, embedded in acrylic resin, polished(P 1200 grid) to surface, and each group was divided into 10 specimens. After then, by the surface treatment method, it classified into three groups(n=10) such as Air abrasion group(PN), applying Single Bond Universal(3M ESPE) after Air abrasion(PB), applying OPAQUE(3M ESPE) after Air abrasion(PO). Then, veneering was performed by using Sinfony(3M ESPE, Seefeld, Germany). All completed specimens were allowed to rest in a $37^{\circ}C$ water bath for 24 hours. Shear bond strength of each group was measured and fracture patterns were classified. Statistic analysis was performed with One-way ANOVA followed by post hoc Scheffe tast (p<.05). Statistical analysis was performed using the SPSSWIN 21.0 program. As a result of one-way ANOVA, the average value of PB group was $27.67{\pm}4,18MPa$ and it was shown as the highest bond strength, PN and PO were $20.43{\pm}1.70$ and $19.8{\pm}4.77MPa$ each, and these were relatively low(F=18.4, P<.001), and as the post-test the Scheffe test was conducted and verified (p<.05). After examining the scheffe test, it was showed significant differences as PB>PO, PB>PN(p<.001). Through this study, in order to enhance the bonding force between PEKK and the composite resin, perform the Air abrasion and surface treatment by using Single Bond Universal(3M ESPE) is recommended, and as coMPared with other studies. And it is assumed that the increase of the application time of the Air abrasion affects the increase of the shear bond strength. Thus, further research is required.

Monitoring of grout material injected under a reservoir using electrical and electromagnetic surveys (전기비저항 및 전자탐사를 이용한 저수지 하부에 주입된 그라우트 재료의 모니터링)

  • Suzuki, Koichi;Oyama, Takahiro;Kawashima, Fumiharu;Tsukada, Tomoyuki;Jyomori, Akira
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.69-79
    • /
    • 2010
  • In order to reduce leakage from a reservoir, a large amount of cement milk (grout) was injected from boreholes drilled around the shores of the reservoir, and monitored to establish the infiltration of cement milk into the bedrock under the reservoir. From laboratory tests using rock core samples, it was revealed that the resistivity of cement milk is much lower than that of the groundwater at this location. Therefore, it was expected that the resistivity of the zones filled with cement milk would be significantly reduced. Geophysical surveys are expected to be suitable methods to check the effectiveness of grouting in improving the water-retaining performance of a reservoir. DC electrical surveys (seven in total) and two Controlled Source Audio-frequency Magneto-Telluric (CSAMT) surveys were conducted along survey lines in the reservoir to monitor the infiltration of cement milk during the grouting. Extremely low resistivity zones ($10\;{\Omega}m$ or less) were observed in resistivity sections obtained by 2D inversion. The zones are inferred to be fractured zones filled with cement milk. In sections showing the rate of change of resistivity, three zones that showed significant change showed gradual expansion to deeper parts as the grouting progressed. These zones correspond to highly permeable zones detected by Lugeon tests at grout boreholes. We have confirmed that it is possible to measure the resistivity change by DC electrical and CSAMT surveys from the surface of the reservoir. It seems that such monitoring results could be reflected in future grouting plans.

THREE DIMENSIONAL LINEAR MEASUREMENT OF PROXIMAL TIBIA IN MEDIAL AND LATERAL APPROACH FOR BONE HARVESTING (경골 근위부 골채취를 위한 내측 및 외측 접근법시의 삼차원적 길이계측)

  • Nam, Woong;Park, Won-Se;Jeong, Ho-Gul;Hu, Kyung-Seok;Cha, In-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.4
    • /
    • pp.307-311
    • /
    • 2007
  • Purpose: The aim of this study was simply assessing linear measurements in the lateral and medial approach, respectively, for bone harvesting using anatomic and three-dimensional(3D) computed tomographic(CT) analyses on a dried cadaveric proximal tibia. In addition, the availability of the three-dimensional computed tomographic(3D-CT) analysis was also estimated. Materials and methods: Ten dried proximal tibia were obtained from five Korean cadavers. Four the reference points, the SM(superior-medial), IM(inferior-medial), SL(superior-lateral), and IL(inferior-lateral) were marked around the tibial tuberosity. The PM(posterior-medial) and PL(posterior-lateral) points were randomly marked at points farthest from the lateral and medial reference points, respectively, in the posterior border of the superior articular surface of both condyles. All measurements were obtained on the dried proximal tibia. After computed tomography had been performed, the three dimensional images were reconstructed using V works $4.0^{TM}$(Cybermed Inc., Seoul, Korea), and the length between the reference points were measured three dimensionally using the method described above. The error between the mean actual and mean 3D-CT measurements was calculated in order to determine the availability of the three dimensional computed tomographic analysis. Results: The length between the reference points was greatest at the IL-PM, which averaged $65.39mm{\pm}10.35$. This was followed by the SL-PM with $63.24mm{\pm}8.10$, the IM-PL with $58.09mm{\pm}10.02$, and the SM-PL with $51.99mm{\pm}9.06$. The differences between the IL-PM and SM-PL were 13.4 mm. The mean values were 55.04 mm in the medial approach and 64.32 mm in the lateral approach, and the differences between medial and lateral were 9.28 mm. The error between the mean actual and mean 3D-CT measurements was 0.31% and the standard deviation was 0.28%. Conclusion: The anatomical and three dimensional computed tomographic analysis indicates that there was only a 9.28 mm linear difference between the lateral and medial approach. This is consistent with previous studies, which showed that there was little difference between the two approaches in terms of the bone volume. In addition, the error(0.31%) and the standard deviation(0.28%) were considered low, demonstrating high accuracy of 3D-CT. Therefore it can be used in preoperative treatment planning.

Optimum Management of Greenhouse Environment by the Shading Coat and Two-fluid Fogging System in Summer Season (차광제와 이류체 포그시스템을 이용한 고온기 시설내 환경관리)

  • Kim, Sung Eun;Lee, Jae Eun;Lee, Sang Don;Kim, Hak Sun;Chun, Hee;Jeong, Woo Ri;Lee, Moon Haeng;Kim, Young Shik
    • Journal of Bio-Environment Control
    • /
    • v.24 no.1
    • /
    • pp.34-38
    • /
    • 2015
  • This research was conducted to establish efficient methods to overcome high temperature and low humidity with light selective shading agent and two-fluid fogging system in greenhouses in hot season. There were four experimental treatments; not treated (Non), fogging by two-fluid fogging system (Fog), spraying onto the greenhouse surface with shading coating agent (Coat), and using fogging and coating together (F&C). The amount of solar radiation entered into the greenhouses was higher in Non, and then Fog, Coat, and F&C in descending order. Fog was more efficient to lower the air temperature and also raise relative humidity than Coat treatment. The crop temperature was about $6^{\circ}C$ higher in Control than the other treatments. F&C revealed as the most efficient method to control the environment inside the greenhouse, but fogging system seemed to be more economic. In stand-alone greenhouses spraying coating agent may be the appropriate choice because of their structural limitations, mainly eave height.