• Title/Summary/Keyword: low-frequency vibration

Search Result 960, Processing Time 0.032 seconds

Acoustic Noise and Vibration Reduction of Coreless Brushless DC Motors with an Air Dynamic Bearing

  • Yang, lee-Woo;Kim, Young-Seok;Kim, Sang-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.255-265
    • /
    • 2009
  • This paper presents the acoustic noise and mechanical vibration reduction of a coreless brushless DC motor with an air dynamic bearing used in a digital lightening processor. The coreless brushless DC motor does not have a stator yoke or stator slot to remove the unbalanced force caused by the interaction between the stator yoke and the rotor magnet. An unbalanced force makes slotless brushless DC motors vibrate and mechanically noisy, and the attractive force between the magnet and the stator yoke increases power consumption. Also, when a coreless brushless DC motor is driven by a $120^{\circ}$ conduction type inverter, high frequency acoustic noise occurs because of the peak components of the phase currents caused by small phase inductance and large phase resistance. In this paper, a core-less brushless DC motor with an air dynamic bearing to remove mechanical vibration and to reduce power consumption is applied to a digital lightening processor. A $180^{\circ}$ conduction type inverter drives it to reduce high frequency acoustic noise. The applied methods are simulated and tested using a manufactured prototype motor with an air dynamic bearing. The experimental results show that a coreless brushless DC motor has characteristics of low power consumption, low mechanical vibration, and low high frequency acoustic noise.

Biomaterials toward Future Medicine

  • Sakurai, Yasuhisa
    • Journal of Biomedical Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.117-118
    • /
    • 1986
  • It is well known that nonlinear propagation characteristics of the wave in the tissue may give very useful information for the medical diagnoisis. In this paper, a new method to detect nonlinear propagation characteristics of the internal vibration in the tissue for the low frequency mechanical vibration by using bispectral analysis is proposed. In the method, low frequency vibration of f0( = 100Hz) is applied on the surface of the object, and the waveform of the internal vibration x (t) is measured from Doppler frequency modulation of silmultaneously transmitted probing ultrasonic waves. Then, the bispectra of the signal x (t) at the frequencies (f0, f0) and (f0, 2f0) are calculated to estimate the nonlinear propagation characteristics as their magnitude ratio, w here since bispectrum is free from the gaussian additive noise we can get the value with high S/N. Basic experimental system is constructed by using 3.0 MHz probing ultrasonic waves and the several experiments are carried out for some phantoms. Results show the superiority of the proposed method to the conventional method using power spectrum and also its usefulness for the tissue characterization.

  • PDF

Design and analysis of ZnO piezoelectric micro power generators with low frequency (저주파수용 ZnO 압전 마이크로 전원의 설계와 분석)

  • Chung, Gwiy-Sang;Yoon, Kyu-Hyung
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.372-376
    • /
    • 2009
  • This paper describes the characteristics of piezoelectric micro power generators by the ANSYS FEA(finite element analysis). The micro power generator was designed to convert ambient vibration energy to electrical power as a ZnO piezoelectric material. To find optimal model in low vibration ambient, the shape of power generator was changed with different membrane width, thickness, length, and proof mass size. Using the ANSYS modal analysis, bending mode and stress distribution of optimal model were analyzed. Moreover, the displacement with the frequency range was analyzed by harmonic analysis. From the simulation results, the resonance frequency of optimal model is about 373 Hz and investigate the possibility of ZnO micro power generator for ambient vibration applications.

Characteristics of Shear-Thinning Fluid Viscosity under Traversal Vibration (진동장에서의 전단박화 유체 점도의 특성 연구)

  • Ku Yun-Hee;Lee Ji-Hyung;Shin Sehyun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.317-320
    • /
    • 2002
  • The effect of vibration on the viscosity of a shear-thinning fluid was investigated with a newly designed pressure-scanning capillary viscometer. The viscometer was designed to measure non-Newtonian viscosity continuously over a range of shear rates at a time. Low frequency vibration was applied perpendicularly to the direction of the flow. The effect of the transversal vibration was investigated for both Newtonian fluids and non-Newtonian fluids. The experimental results showed that the vibration had no effect on the viscosity of the Newtonian fluids. However, the vibration caused a significant reduction of the shear-thinning fluid viscosity. The viscosity reduction was strongly dependent on both vibration frequency and shear rate. In addition, the viscosity reduction was affected by the amplitude of vibration, and, the bigger amplitude applied, the more viscosity reduction occurred.

  • PDF

A Research for Reducing Methods of Sub-synchronous Vibration in Water Turbines (수차에서 발생되는 유체여기진동 저감방안 연구)

  • Park, Han-Yung;Cho, Sung-Su;Ra, Beyong-Pil;Kim, Jin-Hun;Park, Jong-Ho;Lee, Yeon-Ju
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.5
    • /
    • pp.13-18
    • /
    • 2009
  • In this paper, it is intended to figure out the features and causes of the processes of creation, growth and disappearance of spiral-vortex-flow generated in Francis turbines generally. The spiral-vortex-flow generated in draft tubes of the Francis turbines is estimated to have negative effects on power plant structure and to the people inside the building as well as to lead to a low-frequency-vibration driven by sub-synchronous whirl vibration. Therefore, we intend to investigate how much the low-frequency-vibration has an influence upon the powerhouse structure and practice analyzing the effectiveness on the previously-introduced methods to reduce side-effects of sub-synchronous whirl vibration and finally we intend to show the optimal solutions through this paper.

Analytical Study in Brake Judder Reduction of Medium Bus (중형 버스의 브레이크 저더 현상 개선에 대한 해석적 고찰)

  • 이계섭;서권희;국종영;천인범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.148-156
    • /
    • 2001
  • Brake judder, one of low Sequency vibrations in brake system is determined by the excitation of Brake Torque Variation (BTV). The largest contributor to BTV is disc thickness variation. In this study, the static loads of brake torque at Suspension Mounting Points (SW) are obtained by the quasi-static analysis using DADS. The dynamic loads with frequency of BTV at SW are derived from correlation between forced vibration analysis with static loads and brake test results. And the accelerations at steering wheel were analyzed by forced vibration analysis with dynamic loads using commercial finite element program MSC/NASTRAN so that vibration characteristics of vehicle due to brake judder were investigated. Reliability of analysis results was verified through comparing the brake test results. Also, a parametric study with natural frequencies of frame, such as the 1st torsional mode and 1st bending mode, was conducted to reduce vibration amplitudes. As a result we could detect frame natural frequency conditions to improve vibration characteristics and obtained the frame model to reduce vibration amplitude.

  • PDF

Noise and Vibration Characteristics of Concrete Floor Structures Using Resilient Materials Driven by Standard Heavy Impact Source (완충재 유무에 따른 표준중량충격원에 의한 콘크리트 바닥 구조의 소음 및 진동 특성)

  • 송희수;전진용;서상호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.661-667
    • /
    • 2004
  • The characteristics of noise and vibration by a heavy impact source was studied. The triggering method was used for increasing the reliability and stability to measure the level of sound pressure. sound intensity and vibration acceleration. A simple finite element model and a rigid body analysis method were suggested to calculate the natural frequencies of the multi-layer floor system. The results show that the resilient materials decrease the natural frequency of the reinforced concrete slab, make a resonance with dominant driving frequency in the low frequency region, and increase the vibration and noise level. A simple finite element model and rigid body models was suggested to calculate the natural frequencies of the floor systems.

Study on method of build up low-frequency diffuse sound field in a scaled reverberation chamber (축소잔향실의 저주파수 확산음장 형성 방법에 대한 연구)

  • Kang, Jun-Goo;Kang, Hyun-Ju;Kim, Sang-Ryul;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.61-64
    • /
    • 2007
  • This study is dealt with a method to enhance low-frequency diffuse sound field in a scaled reverberation chamber. Because scaled reverberation chamber has not enough room volume, as a result, it shows a few room modes. So it is not build up low-frequency diffuse sound field. A Helmholtz resonator's arrangement is used to improve spatial uniformity of sound pressure at low frequency. The spatial distribution of sound field has been measured before and after control. The standard deviation of sound field has decreased at 315Hz 1/3 Octave band.

  • PDF

Exhaust Noise Control of Marine Diesel Engine by using Resonator Type Silencer (공명형 소음기를 이용한 박용 디젤엔진 배기 소음 제어)

  • Lee, Tae-Kyung;Joo, Won-Ho;Bae, Jong-Gug
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.350-354
    • /
    • 2008
  • Low frequency exhaust noise of marine diesel engine is one of the most important noise sources in vessels. However, conventional absorptive silencers are limited because the absorptive material is not effective in low frequency range. In the paper, exhaust noise control of marine diesel engine has been studied by using the resonator type silencer, which was composed of concentric hole-cavity resonators. The acoustic performance of the resonator type silencer was verified by the insertion loss measurement considering flow effect. Consequently, its high performance, about $5{\sim}8dB$ noise reduction, in the low frequency range was confirmed by insertion loss measurements conducted in the ship.

  • PDF

Study on Low Frequency Swishing Sound Field by a Singularity in Circular Motion with Large Radius (큰 반경의 원운동을 하는 점 음원에 의한 저주파수 스위싱 음장 분석)

  • Lee, Gwang-Se;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.569-574
    • /
    • 2014
  • In order to investigate low frequency swishing noise of wind turbines, acoustic source model using a singularity in circular motion is introduced to derive analytic solution of Lowson acoustic analogy in time domain. Results in time and frequency domains computed by the solution show apparent modulation of amplitude and frequency. The solution indicates that time histories of acoustic pressure at receiver points varied significantly according to receiver's directional location, even when the retarded time distributions are similar. However, the corresponding time-averaged spectra of sound pressure at the receiver locations where the retarded time distributions are almost same are not significantly different. It can be inferred from these results that the time-averaged sound pressure spectra which cannot take into account the detailed difference in the time-variation of wind turbine noise may not represent the sound quality of wind turbines due to its swishing. Finally, as an introduction of procedure to quantify low frequency swishing noise level, relative variation of overall sound pressure level is obtained using tonal low frequency noise model.