• 제목/요약/키워드: low-density polyethylene

검색결과 422건 처리시간 0.023초

$\gamma$-선 조사에 의한 LDPE, LLDPE의 가교특성에 관한 연구 (Study on the Crosslinking Characteristics of LDPE and LLDPE by $\gamma$-Ray Irradiation)

  • 김정일;박성현;강필현;노영창
    • 폴리머
    • /
    • 제25권5호
    • /
    • pp.657-664
    • /
    • 2001
  • 본 연구에서는 고분자 수지의 가교율 향상을 위하여 가교제를 첨가한 low density polyethylene (LDPE), linear low density polyethylene (LLDPE) 수지의 가교에 있어서 ${\gamma}$-선 조사의 효과를 조사하였다. LDPE와 LLDPE 시편들은 가교제와 혼합하여 13$0^{\circ}C$의 hot-press mold에서 sheet 형태의 준비하였다. ${\gamma}$-선은 질소분위기에서 50부터 150 kGy로 변화시키며 조사하였다. 이렇게 준비된 시편을 이용하여 방사선 조사선량, 가교제의 종류에 따른 가교율의 변화를 조사하였으며 가교에 따른 기계적 특성, 열안정성과 결정차도의 변화도 평가하였다. 그 견과 방사선 조사선량이 크고, 가교제가 첨가되면 가교율은 상승하였다. 그것과 비례하여 물리적 성질과 열적인 성질도 개선되었다. 그리고 방사선 조사에 의해서 순수한 수지의 겔화율이 증가하면 결정화도는 감소하였다.

  • PDF

Effect of Metallocene-catalyzed Polyethylene on the Rheological and Mechanical Properties of Poly(phenylene sulfide)/Polyethylene Blends

  • Lee, Bo-Sun;Chun, Byoung-Chul;Chung, Yong-Chan
    • Fibers and Polymers
    • /
    • 제5권2호
    • /
    • pp.145-150
    • /
    • 2004
  • Blends of poly(phenylene sulfide) (PPS) and polyethylene, either linear low density polyethylene (LLDPE) or metallocene-catalyzed polyethylene (MPE), that were prepared by melt blending, were investigated. From the rheological properties as determined by capillary rheometry, the melt viscosity of both PPS/LLDPE and PPS/MPE blends was low when PE was in dispersed phase, but high melt viscosity was observed for both blends with PPS in dispersed phase. Significant differences depending on the composition were found in the mechanical properties such as percent elongation at break and notched Izod impact strength. In addition, dispersed phase morphology of the blends was analyzed by a scanning electron microscope (SEM), together with brief discussion about the difference between them.

합판 접착제의 첨가제로서 폴리에틸렌의 이용 (Use of Polyethylene as an Additive in Plywood Adhesive)

  • 오용성
    • Journal of the Korean Wood Science and Technology
    • /
    • 제26권1호
    • /
    • pp.14-18
    • /
    • 1998
  • A low density polyethylene(LDPE) was examined as an additive in phenol-formaldehyde(PF) resin adhesive for bonding radiata pine plywood. The LDPE was supplied by the commercial manufacturer. The LDPE was compared to a commercial filler commonly used in structural plywood adhesives in the United States. The adhesive mixes were made by following the recommended procedure of Georgia-Pacific Resins Inc.. using plywood-type PF resin. A total of 48 three-ply plywoods. 6.3 mm nominal thickness and 30 by 30 em in size, were made at two press times (4 and 5 min). two press temperatures (150 and $160^{\circ}C$) and 30 minute assembly times for four adhesive mixing types. Evaluations of the LDPE addition were carried out by performance tension shear tests after two cycle boil aging tests on plywood per the U.S. Product Standard PS I-83. After accelerated-aging tests. plywoods were exhibited no delamination. The test results included tension shear strength and estimated wood failure values. The plywood test results support the use of polyethylene as an additive in plywood adhesives.

  • PDF

Co$^{60}\gamma$.gamma.선이 저밀도 폴리에티렌의 각상에 미치는 조사효과 (Radiation Effect to Each Phase of Morphology on a Low Density Polyethylene Irradiated to $C_0^{60}\gamma$. ray)

  • 김봉흡;강도열;김재환
    • 전기의세계
    • /
    • 제23권5호
    • /
    • pp.54-60
    • /
    • 1974
  • Proposals were mode on how to differentiate radiation effects in morphological phases of polyethylene and discussions were developed with the results obtained on a low density polyethylene, SOCAREX, specified by number average molecular weight; overbar Mn=5,400, density; 0.92, and degree of branch; 3.4/100 carbon atom, which was irradiated to Co$^{60}$ .gamma. ray at the dose rate of 0.5 Mrad/hr in ambient temperature under the pressure of 10$^{-5}$ Torr. or 1 atm. respectively. The effect to crystalline phase in possibly deduced from dose dependent variation of relative area between (110) and (200) peaks on X ray diffraction spectrum and that, the effects to amorphous phase can be understood through dose dependent relaxation behaviours of .betha. peak on internal friction characteristics of the specimen. The results obtained thus far indicate that, in crystalline phase, relative crystallinity shows a rather rapid decrease up to 20 Mrad with increasing dose, however, little change of crystallinity can be observed in the region between 20-200 Mrad, and degradation appears to be more predominant than crosslinking up to 60 Mrad. While in amorphous phase the indication also shows that degradation is only predominant up to 20 Mrad. Furthermore several correlations can be seen with amenable explanation between dose dependent behaviours observed in both phases.

  • PDF

저밀도 폴리에틸렌/메탈로센 선형 저밀도 폴리에틸렌 블렌드의 열적 거동 및 물성 (Thermal Behavior and Physical Properties of Low Density Polyethylene/Metallocene Linear Low Density Polyethylene Blends)

  • 김장엽;현욱;이동호;노석균;이상원;허완수
    • 폴리머
    • /
    • 제27권5호
    • /
    • pp.502-507
    • /
    • 2003
  • 메탈로센 선형 저밀도 폴리에틸렌 (m-LLDPE)과 저밀도 폴리에틸렌 (LDPE)을 용응 블렌딩 방법으로 블렌드를 제조하여 열적 거동 및 물성을 관찰하였다. LDPE/m-LLDPE1 블렌드는 LDPE조성이 50% 이상이면 두 개의 용융 피크가 관찰된 반면 다른 블렌드들은 단일한 용융 피크를 나타내었다. m-LLDPE에서 공단량체 함량이 감소할수록 용융 온도와 상대 결정화도가 증가하였다. 공단량체 함량이 2 wt%인 m-LLDPE1이 초기 탄성률이 가장 높게 관찰되었고, 공단량체 함량이 증가함에 따라 감소하였다. 블렌드에서 조성에 따른 초기 탄성률의 변화는 상대 결정화도의 거동과 유사하게 나타났다. 블렌드의 파괴 신율은 LDPE/m-LLDPE1과 LDPE/m-LLDPE2 블렌드에서 평균값보다 낮은 파괴 신율을 나타내었었다. m-LLDPE2의 용융 지수가 가장 높게 관찰되었고 공단량체 함량이 증가함에 따라 감소하는 경향을 나타내었다.

Assessment and Applications of Multi-Degradable Polyethylene Films as Packaging Materials

  • Chung, Myong-Soo;Lee, Wang-Hyun;You, Young-Sun;Kim, Hye-Young;Park, Ki-Moon;Lee, Sun-Young
    • Food Science and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.5-12
    • /
    • 2006
  • Degradation performance of environmentally friendly plastics that can be disintegrated by combination of sunlight, microbes in soil, and heat produced in landfills was evaluated for use in industries. Two multi-degradable master batches (MCC-101 and MCC-102 were manufactured, separately mixed with polyethylene using film molding machine to produce 0.025 mm thick films, and exposed to sunlight, microbes, and heat. Low- and high-density polyethylene (LDPE and HDPE) films containing MCC-101 and MCC-102 became unfunctional by increasing severe cleavage at the surface and showed high reduction in elongation after 40 days of exposure to ultraviolet light. LDPE and HDPE films showed significant physical degradation after 100 and 120 days, respectively, of incubation at $68{\pm}2^{\circ}C$. SEM images of films cultured in mixed mold spore suspension at $30^{\circ}C$ and 85% humidity for 30 days revealed accelerated biodegradation on film surfaces by the action of microbes. LDPE films containing MCC-l01 showed absorption of carbonyls, photo-sensitive sites, at $1710\;cm${-1}$ when exposed to light for 40 days, whereas those not exposed to ultraviolet light showed no absorption at the same frequency. MCC-101-based LDPE films showed much lower $M_w$ distribution after exposure to UV than its counterpart, due to agents accelerating photo-degradation contained in MCC-101.

Structure-property relationship of melt intercalated maleated polyethylene nanocomposites

  • Reddy, M.M.;Gupta, Rahul K.;Bhattacharya, S.N.;Parthasarathy, R.
    • Korea-Australia Rheology Journal
    • /
    • 제19권3호
    • /
    • pp.133-139
    • /
    • 2007
  • Low density polyethylene nanocomposites were prepared by melt intercalating maleic anhydride grafted polyethylene and montmorillonite clay. It has been found that maleic anhydride has promoted strong interactions between polyethylene and montmorillonite, leading to the homogeneous dispersion of clay layers. Rheological experiments revealed that prepared nanocomposites exhibited shear thinning behaviour. Polyethylene nanocomposites exhibited an increase in steady shear viscosities compared to virgin polyethylene owing to strong polymer clay interactions. The tensile strength of nanocomposites was improved but elongation at break decreased considerably. Also, barrier properties improved significantly with montmorillonite content.

플라스틱 봉투 표면에서 지문을 현출하기 위한 Vacuum Metal Deposition (VMD)과 분말법의 비교 (Comparison of vacuum metal deposition (VMD) and powder method for developing latent fingerprint on plastic envelope surface)

  • 김채원;이나래;김태원;유제설
    • 분석과학
    • /
    • 제33권3호
    • /
    • pp.159-166
    • /
    • 2020
  • 진공금속증착법(vacuum metal deposition, 이하 VMD)는 비다공성과 반다공성 표면의 잠재지문을 현출하는데 효과적이다. VMD는 일반적인 기법으로 현출할 수 없거나 어려운 표면에 유류된 지문을 현출하는 경우에서 활용할 수 있다. VMD 기법이 권장되는 표면은 비닐, 폴리머 지폐, 마그네틱 코팅 처리가 된 티켓 등이 있다. 본 연구에서는 택배 봉투로 주로 사용되는 분홍색 고밀도 폴리에틸렌 봉투(HDPE)와 저밀도 폴리에틸렌 봉투(LDPE)에 지문을 유류한 뒤 최소 12시간부터 최대 28일이 경과한 지문을 현출하기 위한 금의 최소 투입량을 탐색하였다. 그리고 그 결과를 흑색분말, 형광분말의 효과와 비교하였다. 또한, 실제로 배송에 사용된 택배 봉투를 수거한 다음 HDPE와 LDPE로 분류하고 pseudo-operation test를 시행하였다. 그 결과, VMD는 HDPE와 LDPE 표면에서 비교적 일관된 지문 현출 결과를 보여주었다.

Plug Flow Reactor 모델을 이용한 폐플라스틱의 열분해 특성 해석 (Analysis on the Pyrolysis Characteristics of Waste Plastics Using Plug Flow Reactor Model)

  • 최상규;최연석;정연우;한소영;응웬 반 꾸잉
    • 신재생에너지
    • /
    • 제18권4호
    • /
    • pp.12-21
    • /
    • 2022
  • The pyrolysis characteristics of high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polypropylene (PP) were analyzed numerically using a 1D plug flow reactor (PFR) model. A lumped kinetic model was selected to simplify the pyrolysis products as wax, oil, and gas. The simulation was performed in the 400-600℃ range, and the plastic pyrolysis and product generation characteristics with respect to time were compared at various temperatures. It was found that plastic pyrolysis accelerates rapidly as the temperature rises. The amounts of the pyrolysis products wax and oil increase and then decrease with time, whereas the amount of gas produced increases continuously. In LDPE pyrolysis, the pyrolysis time was longer than that observed for other plastics at a specified temperature, and the amount of wax generated was the greatest. The maximum mass fraction of oil was obtained in the order of HDPE, PP, and LDPE at a specified temperature, and it decreased with temperature. Although the 1D model adopted in this study has a limitation in that it does not include material transport and heat transfer phenomena, the qualitative results presented herein could provide base data regarding various types of plastic pyrolysis to predict the product characteristics. These results can in turn be used when designing pyrolysis reactors.