• Title/Summary/Keyword: low-complexity design

Search Result 349, Processing Time 0.025 seconds

Design and Implementation of a Low-Complexity Real-Time Barrel Distortion Corrector for Wide-Angle Cameras (광각 카메라를 위한 저 복잡도 실시간 베럴 왜곡 보정 프로세서의 설계 및 구현)

  • Jeong, Hui-Seong;Kim, Won-Tae;Lee, Gwang-Ho;Kim, Tae-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.131-137
    • /
    • 2013
  • The barrel distortion makes serious problems in a wide-angle camera employing a lens of a short focal length. This paper presents a low-complexity hardware architecture for a real-time barrel distortion corrector and its implementation. In the proposed barrel distortion corrector, the conventional algorithm is modified so that the correction is performed incrementally, which results in the reduction of the number of required hardware modules for the distortion correction. The proposed barrel distortion corrector has a pipelined architecture so as to achieve a high-throughput correction. The correction rate is 74.86 frames per sec at the operating frequency of 314MHz in a $0.11{\mu}m$ CMOS process, where the frame size is $2048{\times}2048$. The proposed barrel distortion corrector is implemented with 14.3K logic gates.

Sample-Adaptive Product Quantization and Design Algorithm (표본 적응 프러덕트 양자화와 설계 알고리즘)

  • 김동식;박섭형
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12B
    • /
    • pp.2391-2400
    • /
    • 1999
  • Vector quantizer (VQ) is an efficient data compression technique for low bit rate applications. However, the major disadvantage of VQ is its encoding complexity which increases dramatically as the vector dimension and bit rate increase. Even though one can use a modified VQ to reduce the encoding complexity, it is nearly impossible to implement such a VQ at a high bit rate or for a large vector dimension because of the enormously large memory requirement for the codebook and the very large training sequence (TS) size. To overcome this difficulty, in this paper we propose a novel structurally constrained VQ for the high bit rate and the large vector dimension cases in order to obtain VQ-level performance. Furthermore, this VQ can be extended to the low bit rate applications. The proposed quantization scheme has a form of feed-forward adaptive quantizer with a short adaptation period. Hence, we call this quantization scheme sample-adaptive product quantizer (SAPQ). SAPQ can provide a 2 ~3dB improvement over the Lloyd-Max scalar quantizers.

  • PDF

Embedded Multithreading Processor Architecture for Personal Information Devices (개인용 정보 단말장치를 위한 내장형 멀티스레딩 프로세서 구조)

  • Jeong, Ha-Young;Chung, Won-Young;Lee, Yong-Surk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.9
    • /
    • pp.7-13
    • /
    • 2010
  • In this paper, we proposed a processor architecture that is suitable for next generation embedded applications, especially for personal information devices such as smart phones, tablet PC. Latest high performance embedded processors are developed to achieve high clock speed. Because increasing performance makes design more difficult and induces large overhead, architectural evolution in embedded processor field is necessary. Among more enhanced processor types, out-of-order superscalar cannot be a candidate for embedded applications due to its excessive complexity and relatively low performance gain compared to its overhead. Therefore, new architecture with moderate complexity must be designed. In this paper, we developed a low-cost SMT architecture model and compared its performance to other architectures including scalar, superscalar and multiprocessor. Because current personal information devices have a tendency to execute multiple tasks simultaneously, SMT or CMP can be a good choice. And our simulation result shows that the efficiency of SMT is the best among the architectures considered.

Efficient Receiver Design Based On Block-Coded Correlator Scheme for UWB-IR (무선광대역 시스템을 위한 블록 부호화 상관기 기반의 효율적인 수신기 설계 기법)

  • Min, Seungwook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7582-7588
    • /
    • 2015
  • Noncoherent receivers are favored for block-code-modulated ultrawideband impulse radio (UWB-IR) systems because of their low implementation complexity compared with coherent rake receivers. However, existing noncoherent schemes, such as transmitted reference (TR) systems and averaged differential receivers (ADR), suffer from performance degradation and energy efficiency loss. Codeword matching and signal aggregation (CMSA) is a low complexity noncoherent receiver for UWB-IR. As the frame/symbol duration is shortened to boost data rate, interframe interference (IFI) or intersymbol interference (ISI) occurs and degrades the detection performance of CMSA. In this paper, block coded correlator which consists of the delay components and the reference signal is proposed to improve the performance of the receiver. Simulation results show that the proposed system leads to the better performance compared to the conventional CMSA receiver.

Energy Efficient Cooperative LEACH Protocol for Wireless Sensor Networks

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.358-365
    • /
    • 2010
  • We develop a low complexity cooperative diversity protocol for low energy adaptive clustering hierarchy (LEACH) based wireless sensor networks. A cross layer approach is used to obtain spatial diversity in the physical layer. In this paper, a simple modification in clustering algorithm of the LEACH protocol is proposed to exploit virtual multiple-input multiple-output (MIMO) based user cooperation. In lieu of selecting a single cluster-head at network layer, we proposed M cluster-heads in each cluster to obtain a diversity order of M in long distance communication. Due to the broadcast nature of wireless transmission, cluster-heads are able to receive data from sensor nodes at the same time. This fact ensures the synchronization required to implement a virtual MIMO based space time block code (STBC) in cluster-head to sink node transmission. An analytical method to evaluate the energy consumption based on BER curve is presented. Analysis and simulation results show that proposed cooperative LEACH protocol can save a huge amount of energy over LEACH protocol with same data rate, bit error rate, delay and bandwidth requirements. Moreover, this proposal can achieve higher order diversity with improved spectral efficiency compared to other virtual MIMO based protocols.

The Cost-effective Architecture Design of an Angle-of-Arrival Estimator in UWB Systems (UWB 시스템에서 입사각 추정기의 효율적인 하드웨어 구조 설계)

  • Lee, Seong-Joo;Han, Kwi-Beum
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.11
    • /
    • pp.137-141
    • /
    • 2007
  • This paper proposes a cost-effective architecture design of an angle-of-arrival (AOA) estimator based on the multiple signal identification and classification (MUSIC) algerian in UWB systems adapting Multi-band OFDM (MB-OFDM) techniques with two-receive antennas. In the proposed method, by modifying the equations of algorithm in order to remove the high computational functions, the computation power can be significantly reduced without significant performance degradation. The proposed architecture is designed and verified by Verilog HDL, and implemented into 0.13um CMOS standard cell and Xilinx FPGA circuits for the estimation of hardware complexity and computation power. From the results of the implementations, we can find that the proposed circuits reduces the hardware complexity by about 43% and the estimated computation power by about 23%, respectively, compared to the architecture employing the original MUSIC algorithm.

Development of Feature-Based 3D CAD Assembly Data Simplification System for Equipment and Materials (특징형상 기반 기자재 3D CAD 조립체 데이터 간략화 시스템 개발)

  • Kim, Byung Chul;Kwon, Soonjo;Park, Sunah;Mun, Duhwan;Han, Soonhung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1075-1084
    • /
    • 2014
  • It is necessary to construct an equipment catalog in plant design. A different level of detail may be needed for the three-dimensional (3D) computer aided design (CAD) data for equipment, depending on the purpose. Equipment suppliers provide CAD data with high complexity, whereas plant designers need CAD data with low complexity. Therefore, it is necessary to simplify the 3D CAD assembly data. To resolve this issue, a system for automatically simplifying the 3D CAD assembly data of equipment was developed. This paper presents the architecture of the system, the detailed functions of the system, and a neutral data format used for uploading simplified 3D CAD assembly data to a plant 3D CAD system. In addition, experiment results using the prototype system are explained.

Design and Implementation of Human-Detecting Radar System for Indoor Security Applications (실내 보안 응용을 위한 사람 감지 레이다 시스템의 설계 및 구현)

  • Jang, Daeho;Kim, Hyeon;Jung, Yunho
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.783-790
    • /
    • 2020
  • In this paper, the human detecting radar system for indoor security applications is proposed, and its FPGA-based implementation results are presented. In order to minimize the complexity and memory requirements of the computation, the top half of the spectrogram was used to extract features, excluding the feature extraction techniques that require complex computation, feature extraction techniques were proposed considering classification performance and complexity. In addition, memory requirements were minimized by designing a pipeline structure without storing the entire spectrogram. Experiments on human, dog and robot cleaners were conducted for classification, and 96.2% accuracy performance was confirmed. The proposed system was implemented using Verilog-HDL, and we confirmed that a low-area design using 1140 logics and 6.5 Kb of memory was possible.

Quantization Performances and Iteration Number Statistics for Decoding Low Density Parity Check Codes (LDPC 부호의 복호를 위한 양자화 성능과 반복 횟수 통계)

  • Seo, Young-Dong;Kong, Min-Han;Song, Moon-Kyou
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.2
    • /
    • pp.37-43
    • /
    • 2008
  • The performance and hardware complexity of LDPC decoders depend on the design parameters of quantization, the clipping threshold $c_{th}$ and the number of quantization bits q, and also on the maximum number of decoding iterations. In this paper, the BER performances of LDPC codes are evaluated according to the clipping threshold $c_{th}$ and the number of quantization bits q through the simulation studies. By comparing the quantized Min-Sum algorithm with the ideal Min-Sum algorithm, it is shown that the quantized case with $c_{th}=2.5$ and q=6 has the best performance, which approaches the idea case. The decoding complexities are calculated and the word error rates(WER) are estimated by using the pdf which is obtained through the statistical analyses on the iteration numbers. These results can be utilized to tradeoff between the decoding performance and the complexity in LDPC decoder design.

A Design of the IP Lookup Architecture for High-Speed Internet Router (고속의 인터넷 라우터를 위한 IP 룩업구조 설계)

  • 서해준;안희일;조태원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7B
    • /
    • pp.647-659
    • /
    • 2003
  • LPM(Longest Prefix Matching)searching in If address lookup is a major bottleneck of IP packet processing in the high speed router. In the conventional lookup table for the LPM searching in CAM(Content Addressable Memory) the complexity of fast update take 0(1). In this paper, we designed pipeline architecture for fast update of 0(1) cycle of lookup table and high throughput and low area complexity on LPM searching. Lookup-table architecture was designed by CAM(Content Addressable Memory)away that uses 1bit RAM(Random Access Memory)cell. It has three pipeline stages. Its LPM searching rate is affected by both the number of key field blocks in stage 1 and stage 2, and distribution of matching Point. The RTL(Register Transistor Level) design is carried out using Verilog-HDL. The functional verification is thoroughly done at the gate level using 0.35${\mu}{\textrm}{m}$ CMOS SEC standard cell library.