• Title/Summary/Keyword: low-carbon

Search Result 4,445, Processing Time 0.032 seconds

Low temperature synthesize of carbon nanofibers using Fe-phthalocyanine (Fe-Phthalocyanine을 이용한 carbon nanofiber의 저온 합성)

  • Ryu, Jeong-Tak;Ikuno, T.;Katayama, M.;Oura, K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.896-899
    • /
    • 2003
  • Using hi plasma and Fe-Phthalocyanine, carbon nanofibers have been synthesized a low temperature. The carbon nanofibers had about In nm diameter and up to $10{\mu}m$ length. These were grown in random orientation. There are two shapes in the CNFs, screw and straight line shapes. Furthermore, we found the selective growth of nanofibers on the scratched substrates.

  • PDF

The effect of carbon content on hot cracking of low carbon steel weld (저탄소성 용접금속의 응고균열에 미치는 탄소함량의 영향)

  • ;;Masumoto, I.
    • Journal of Welding and Joining
    • /
    • v.6 no.4
    • /
    • pp.16-26
    • /
    • 1988
  • The effect of carbon content on hot cracking of welded carbon steel was investigated Eight steel plates whose carbon content range from 0.02 to 0.23 percent were welded by autogeous gas tungsten are process. Constant strain was applied to the hot crack test specimen under the strain rate of 0.15 mm per second during welding. The hot cracking susceptibility ws high in the rnage of 0.02-0.05 and 0.12-0.23 percent carbon contents. The critical carbon content immune to hot cracking is in the range from 0.07 to 0.12 percent carbon. By electron probe microanalyser, amanganese segregation was not seen significantly in the whole carbon range. But segregation of silicon was higher in the region of low carbon contents. However, sulphur was segregated remarkably in the region betwen 0.18 and 0.23 percent carbon by peritectic reaction. Very smal lamount of dnedritic structure was observed in the region from 0.02 to 0.05 percent carbon by peritectic reaction. Very small amount of dendritic structure was observed in the region from 0.02 to 0.05 percent carbon but the predominant solidification structure was smooth by cellular growth. The higher the carbon content is, the more the columnar dendritic structure was observed.

  • PDF

Research on sustainable development of international trade in Shandong Province under the background of the fourth industrial revolution

  • ZHANG, Fan
    • Korean Journal of Artificial Intelligence
    • /
    • v.8 no.2
    • /
    • pp.17-22
    • /
    • 2020
  • Purpose: After entering the 21st century, a new industrial revolution, i.e. industrial revolution 4.0, which is characterized by intelligence, automation and networking, has opened the curtain of the "industry 4.0" era. In recent years, "low-carbon economy" has been a development goal that has been paid close attention to and adhered to at home and abroad. As a major economic province, Shandong Province has not only brought about rapid economic growth, but also caused rapid environmental deterioration due to its high energy consumption, high dependence and high environmental pollution. In this environment, low-carbon economy has become an inevitable trend in the development of foreign trade in Shandong Province. Based on the current situation of foreign trade in Shandong Province and various existing problems, this paper explores the relationship between low-carbon economy and foreign trade in Shandong Province under this strategic background. Research design, data and methodology: By selecting the data from 2008 to 2017, using the carbon emission coefficient method to measure the CO2 emissions in the past decade, analyzing the impact of ecological factors on trade, selecting the most representative GDP and total imports for regression analysis, it is proved that they have a real impact on CO2 emissions. The total GDP is positively correlated with carbon emissions, while the total import is negatively correlated with carbon emissions. Results:This paper discusses the impact of low-carbon economy on foreign trade of Shandong Province from the perspective of foreign trade. Especially in today's "low-carbon economy" background. Conclusions:it is helpful for relevant departments to formulate relevant policies and promote the sustainable development of foreign trade in Shandong Province.

Effects of Grain Size on Carbon Diffusion in an Ultra-Low Carbon Steel for Hot Press Forming (열간 프레스 성형공정 적용을 위한 극저탄소강의 탄소확산에 미치는 결정립 크기의 영향)

  • Kang, Soo Young
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.883-889
    • /
    • 2012
  • Carbon diffusion of ultra low carbon steel treated at $880^{\circ}C$ and $930^{\circ}C$ for 10, 30, 60 and 120 minutes was investigated using optical microscopy, SAM, EPMA, and Micro Vickers. The martensite patterns of the specimens treated at $880^{\circ}C$ and $930^{\circ}C$ were different. Martensite in the ferrite region was found in the specimen treated at $880^{\circ}C$ because of grain boundary diffusion. Such phenomena is explained by a carbon diffusion model.

Inhomogeneity of Hot Rolling Texture in Cu/Nb Added Ultra Low Carbon Steels

  • Jiang, Ying-Hua;Park, Young-Koo;Lee, Oh-Yeon
    • Korean Journal of Materials Research
    • /
    • v.17 no.12
    • /
    • pp.634-636
    • /
    • 2007
  • The texture and microstructure in Cu/Nb added ultra low carbon steels through the different thickness layer were studied after hot rolling. It was found that the two ultra low carbon steels all show the inhomogeneity of hot rolling texture and the Cu-added ultra low carbon steel was far more inhomogeneous than Nb-added one. In the center layer, the strong ${\alpha}\;fibre,\;{\gamma}\;fibre$ textures and the shear textures including 001<110>, 111<112> were founded. Near the surface, the ${\alpha}\;fibre$ texture and the orientation texture caused by a typical plane-strain deformation condition of bcc metals were observed.

XRD and Image Analyis of Low Carbon Type Recycled Cement Using Waste Concrete Powder (폐콘크리트 미분말을 이용하여 제조한 저탄소형 클링커의 XRD 및 영상분석)

  • Shin, Hyeon-Uk;Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu;Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.252-253
    • /
    • 2014
  • This study is to XRD and image analysis of low carbon type recycled cement from waste concrete powder and cement raw materials. Waste concrete powder possible to low carbon type recycled cement in small part of additive materials. Also, low carbon type recycled cement using waste concrete powder is suitable for ordinary portland cement.

  • PDF

Physical and Mechanical Properties of Low Carbon Green Concrete (저탄소 그린콘크리트의 물리·역학적 특성)

  • Cho, Il Ho;Sung, Chan Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.123-128
    • /
    • 2013
  • This study was performed to evaluate the slump flow, air content, setting time, compressive strength, adiabatic temperature rise and diffusion coefficient of chloride used ordinary portland cement, crushed coarse aggregate, crushed sand, river sand, fly ash, limestone powder, blast furnace slag powder and superplasticizer to find optimum mix design of low carbon green concrete for structures. The performances of low carbon green concrete used fly ash, limestone powder and blast furnace slag powder were remarkably improved. This fact is expected to have economical effects in the manufacture of low carbon green concrete for structures. Accordingly, the fly ash, limestone powder and blast furnace slag powder can be used for low carbon green concrete material.

Development and application of a hybrid prestressed segmental concrete girder utilizing low carbon materials

  • Yang, Jun-Mo;Kim, Jin-Kook
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.371-381
    • /
    • 2019
  • A hybrid prestressed segmental concrete (HPSC) girder utilizing low carbon materials was developed in this paper. This paper introduces the hybrid prestressing concept of pre-tensioning the center segment and assembling all segments by post-tensioning, as well as the development process of the low carbon HPSC girder. First, an optimized mix proportion of 60 MPa high strength concrete containing high volume blast furnace slag was developed, then its mechanical properties and durability characteristics were evaluated. Second, the mechanical properties of 2,400 MPa high strength prestressing strands and the transfer length characteristics in pre-tensioned prestressed concrete beams were evaluated. Third, using those low carbon materials and the hybrid prestressing concept, the HPSC girders were manufactured, and their structural performance was evaluated. A 30-m long HPSC girder for highway bridges and a 35-m long HPSC girder for railway bridges were designed, manufactured, and structurally confirmed as having sufficient strength and safety. Finally, five 35-m long HPSC girders were successfully applied to an actual railway bridge for the first time.

Comparative Analysis of Scenarios for Reducing GHG Emissions in Korea by 2050 Using the Low Carbon Path Calculator (저탄소 경로 모형을 활용한 2050년 한국의 온실가스 감축 시나리오 비교 분석)

  • Park, Nyun-Bae;Yoo, Jung-Hwa;Jo, Mi-Hyun;Yun, Seong-Gwon;Jeon, Eui Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.556-570
    • /
    • 2012
  • The Low Carbon Path Calculator is an excel-based model to project greenhouse gas emissions from 2009 to 2050, which is based on the 2050 Pathways Calculator developed by the UK Department of Energy and Climate Change (DECC). Scenarios are developed to reduce GHG emissions in Korea at 50% based on 2005 levels by 2050 using a Low Carbon Path Calculator. They were classified in four different cases, which are high renewable, high nuclear, high CCS and mixed option scenarios. The objectives of this study are to compare scenarios in terms of GHG emissions, final energy, primary energy and electricity generation and examine the usefulness of that model in terms of identifying pathways towards a low carbon emission society. This model will enhance the understanding of the pathways toward a low carbon society and the level of the climate change policy for policy makers, stakeholders, and the public. This study can be considered as a reference for developing strategies in reducing GHG emissions in the long term.

Microstructure Characteristics and Identification of Low-Carbon Steels Fabricated by Controlled Rolling and Accelerated Cooling Processes (제어 압연과 가속 냉각에 의해 저탄소강에서 형성되는 미세조직의 특징과 구분)

  • Lee, Sang-In;Hong, Tae-Woon;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.636-642
    • /
    • 2017
  • In the present study the microstructure of low-carbon steels fabricated by controlled rolling and accelerated cooling processes was characterized and identified based on various microstructure analysis methods including optical and scanning electron microscopy, and electron backscatter diffraction(EBSD). Although low-carbon steels are usually composed of ${\alpha}-ferrite$ and cementite($Fe_3C$) phases, they can have complex microstructures consisting of ferrites with different size, morphology, and dislocation density, and secondary phases dependent on rolling and accelerated cooling conditions. The microstructure of low-carbon steels investigated in this study was basically classified into polygonal ferrite, acicular ferrite, granular bainite, and bainitic ferrite based on the inverse pole figure, image quality, grain boundary, kernel average misorientation(KAM), and grain orientation spread(GOS) maps, obtained from EBSD analysis. From these results, it can be said that the EBSD analysis provides a valuable tool to identify and quantify the complex microstructure of low-carbon steels fabricated by controlled rolling and accelerated cooling processes.