• Title/Summary/Keyword: low-T thermal history

Search Result 9, Processing Time 0.027 seconds

An Experimental Study about the Measurement of the Thermal Properties of Phase Change Materials using T-history method (T-history 방법에 의한 잠열재의 열물성치 측정에 대한 실험적 연구)

  • Kang, Dong-Hoon;Peck, Jong-Hyeon;Park, Seung-Sang;Seo, Tae-Bum
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.226-231
    • /
    • 2001
  • The purpose of this paper is to propose the experimental method of thermal properties of Phase Change Materials (PCMs) by using T-history method. As far, in order to measure the heat of fusion and specific heat of PCMs, conventional thermal analysis methods such as DSC and DTA have been used. Because these methods test very small samples, thermal properties of samples are usually different from those of materials consisting of several components. For these reasons, T-history method, the simple measurement method of the heat of fusion and specific heat of PCMs have been performed. In this paper, we investigated the thermal properties of low temperature PCMs(below $0^{\circ}C$) under the charging process by using T-history method. The results are compared to those of DSC method. The T-history method will be useful for selection of the best PCM from lots of candidates and development of new PCMs.

  • PDF

Measurement Methods of Latent Heat for PCM with Low Melting Temperature in Closed Tube

  • Hong Hiki;Kang Chaedong;Peck Jong Hyeon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.4
    • /
    • pp.206-213
    • /
    • 2004
  • Cycle test for developed phase change material (PCM) is necessary in order to assess the variation of latent heat, which decreases with time by deterioration. T-history method and measurement using heat-flux meter are appropriate for the cycle test in a tube filled with PCM because they do not need an extraction of sample in measuring heat of fusion. In the present study, these methods were applied to a PCM having a melting point below a room temperature, different to the past studies for PCMs melting above a room temperature. As a result of experiment using pure water as specimen, we can obtained rea-sonable values for heat of fusion.

N-tetradecane/Water Emulsion as a Low-cost Phase Change Material for Efficient Packaging and Shipping of Vaccines

  • Dao, Van-Duong;Choi, Ho-Suk
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.325-330
    • /
    • 2017
  • This study presents the preparation of n-tetradecane-in-water emulsions with different weight ratios of n-tetradecane and water, and their potential application in packaging and shipping vaccines. The size and distribution of the n-tetradecane droplets are characterized using optical microscopy and light scattering methods, respectively. The thermal properties of the emulsions are determined using the T-history method. In the results, the emulsions, which are comprised of 17 ~ 30 wt% oil, 3 wt% surfactant, and 67 ~ 80 wt% water, are stable and have droplet sizes in the range of 100 to 800 nm. The thermal properties demonstrate that subcooling is prevented through increasing the droplet size. The results indicate that the n-tetradecane/water emulsions containing 25 ~ 35 wt% n-tetradecane, with a melting point of $2{\sim}8^{\circ}C$ and a latent heat of $227.0{\sim}250.8kJ\;kg^{-1}$, are good candidate materials for packaging and shipping vaccines.

High-temperature Low-cycle Fatigue Life prediction of a Liquid Rocket Turbopump Turbine (액체로켓 터보펌프 터빈의 고열 저주기 피로수명 예측)

  • Lee, Mu-Hyoung;Jang, Byung-Wook;Jeong, Eun-Hwan;Jeon, Seong-Min;Lee, Soo-Yong;Park, Jung-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.18-21
    • /
    • 2009
  • The life of components under high thermal load is typically shorter than other components. The turbopump turbine of liquid rocket is operated under these environments like high temperature and high centrifugal dorce due to high rotating velocity during operating time. These conditions may often cause low-cycle fatigue problem in the turbopump turbine. First of all, to analyze heat stress, ABAQUS/CAE is used and Coffin-manson's equation is used to consider elasticity and plasticity strain. S.W.T's method is used to consider the mean stress effect, using strain history, low-cycle fatigue analysis is done for turbopump turbine which may have FCL(fracture critical location). In this paper, strain life method is applied to analyze low-cycle fatigue.

  • PDF

Study on the interrelationship between the PWV and the temperature difference (맥파전달속도(PWV)와 말초체열분포(DITI)와의 관계 연구)

  • Lee, Yoon-Jae;Cho, Jung-Hoon;Lee, Chang-Hoon;Lee, Jin-Moo;Jang, Jun-Bock;Lee, Kyung-Sub
    • Journal of Oriental Medical Thermology
    • /
    • v.6 no.1
    • /
    • pp.23-31
    • /
    • 2008
  • Objective: The purpose of this study is to identify relationship between the PWV and the temperature difference. Methods: When it comes to senile patients who suffer from cold limbs, there is need to see whether or not the patient's low temperature of the limbs is do to arteriosclerosis. The Pulse Wave Velocity(PWV) is a non-invasive method measuring the artery's rigidness. And the Digital Infrared Thermal Imaging(D.I.T.I) is a non-invasive method to see the body's thermal change. Research on the interrelationship of the artery's rigidness and body's thermal distribution was done by using these two tests. The subjects of this research were patients between the age 40~65 who have done both the D.I.T.I and PWV in March 2005~ September 2005. They had to have no history of diabetes, coronary illnesses or cerebrovascular diseases which are diseases that can effect the outcome of the PVW, nor history of spondylopathy or dermatosis which can effect the outcome of the D.I.T.I. Results: The results were as follows. 1. There was a significant interrelationship between the right wrist-ankle PWV and the temperature difference of the right wrist-palm. 2. There was a significant interrelationship between the left wrist-ankle PWV and the temperature difference of the left wrist-palm. 3. There was no significant interrelationship between the right wrist-ankle PWV and the temperature difference of the right thigh-dorsum of foot. 4. There was no significant interrelationship between the left wrist-ankle PWV and the temperature difference of the left thigh-dorsum of foot. 5. The right ABI showed no significant interrelationship between the temperature difference of the right wrist-palm and the right thigh-dorsum of foot. 6. The left ABI showed no significant interrelationship between the temperature difference of the left wrist-palm and the left thigh-dorsum of foot. Conclusion: The study shows that there was a significant interrelationship between wrist-ankle PWV and the temperature difference of wrist-palm.

  • PDF

AGS Distribution in Low-Speed Round-Oval Rolling of S20C Steel (S20C강 저속 라운드-모발 압연의 AGS 분포)

  • Kwon H. C.;Lee H. W.;Lee Y.;Im Y. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.297-306
    • /
    • 2004
  • This study investigated Austenite Grain Size (AGS) distribution in Low-Speed Round-Oval Rolling. Rolling experiments were done along with the AGS numerical modeling to characterize the final AGS distribution and its kinetics behavior. For bar rolling experiment, we utilized the pilot rolling mill, operating at 34 fixed rpm, at POSCO Technical Research Laboratories. To investigate the microstructural observation, the rigid-viscoplastic finite element analysis was combined with Hodgson's AGS evolution model. To consider the transient thermal history in the integrative AGS modeling, additivity rule was introduced. The integrated analysis revealed that static or meta-dynamic recrystallization is responsible for the AGS difference in the inner or outer region of rolled bar. Comparative study showed that the current AGS modeling approach can be used to model the overall AGS distribution in bar rolling processes. For more accurate AGS prediction, the AGS modeling method should be verified under the various rolling conditions such as different rolling speeds and different deformations.

  • PDF

(U-Th)/He Dating on Martian Meteorites: Reviews and Perspectives (화성운석에 대한(U-Th)/He 연령 측정: 기존 연구 및 전망)

  • Min, Kyoung-Won;Lee, Seung-Ryeol
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.255-267
    • /
    • 2010
  • The primary utilization of recently improved (U-Th)/He thermochronometry is to reveal the low-T thermal histories of shallow crustal sections or transient episodes (such as wildfires or meteorite impacts) because of the high sensitivity of He diffusion to temperature in host minerals. In this contribution, we present reviews and perspectives regarding how this method can be used to characterize the ejection-related shock metamorphism of Martian meteorites. The temperature conditions of shock metamorphism can be constrained through shock recovery experiments, paleomagnetism, and $^{40}Ar/^{39}Ar$ and (U-Th)/He dating. The most reliable constraints can be deduced when these independent approaches are combined. However, the thermal history of the ALH84001 Martian meteorite has been under serious debate because the different methods have yielded contrasting results. Recent work has shown how single-grain (U-Th)/He and $^{40}Ar/^{39}Ar$ dating, two noble-gas based thermochronometries with different T sensitivities, can be used to resolve this issue, providing a good example for future research on other meteorites.

A Study on the Application of SAW Process for Thin Plate of 3.2 Thickness in Ship Structure (선체외판부 3.2T 박판에 대한 SAW 용접 적용에 관한 연구)

  • Oh, Chong-In;Yun, Jin-Oh;Lim, Dong-Young;Jeong, Sang-Hoon;Lee, Jeong-Soo
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.51-51
    • /
    • 2010
  • Recently just as in the automobile industry, shipbuilders also try to reduce material consumption and weight in order to keep operating costs as low as possible and improve the speed of production. Naturally industry is ever searching for welding techniques offering higher power, higher productivity and a better quality. Therefore it is important to have a details research based on the various welding process applied to steel and other materials, and to have the ability both to counsel interested companies and to evaluate the feasibility of implementation of this process. Submerged-arc welding (SAW) process is usually used about 20% of shipbuilding. Similar to gas metal arc welding(GMAW), SAW involves formation of an arc between a continuously-fed bare wire electrode and the work-piece. The process uses a flux to generate protective gases and slag, and to add alloying elements to the weld pool and a shielding gas is not required. Prior to welding, a thin layer of flux powder is placed on the work-piece surface. The arc moves along the joint line and as it does so, excess flux is recycled via a hopper. Remaining fused slag layers can be easily removed after welding. As the arc is completely covered by the flux layer, heat loss is extremely low. This produces a thermal efficiency as high as 60% (compared with 25% for manual metal arc). SAW process offers many advantages compared to conventional CO2 welding process. The main advantages of SAW are higher welding speed, facility of workers, less deformation and better than bead shape & strength of welded joint because there is no visible arc light, welding is spatter-free, fully-mechanized or automatic process, high travel speed, and depth of penetration and chemical composition of the deposited weld metal. However it is difficult to application of thin plate according to high heat input. So this paper has been focused on application of the field according to SAW process for thin plate in ship-structures. For this purpose, It has been decided to optimized welding condition by experiments, relationship between welding parameters and bead shapes, mechanical test such as tensile and bending. Also finite element(FE) based numerical comparison of thermal history and welding residual stress in A-grade 3.2 thickness steel of SAW been made in this study. From the result of this study, It makes substantial saving of time and manufacturing cost and raises the quality of product.

  • PDF

(U-Th)/He Dating: Principles and Applications ((U-Th)/He 연령측정법의 원리와 응용)

  • Min, Kyoung-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.239-247
    • /
    • 2014
  • The (U-Th)/He dating utilizes the production of alpha particles ($^4He$ atoms) during natural radioactive decays of $^{238}U$, $^{235}U$ and $^{232}Th$. (U-Th)/He age can be determined from the abundances of the parent nuclides $^{238}U$, $^{235}U$ and $^{232}Th$ and the radiogenic $^4He$. Because helium is one of the noble gases (non-reactive) with a relatively small radius, it diffuses rapidly in many geological materials, even at low temperatures. Therefore, ingrowth of $^4He$ during radioactive decay competes with diffusive loss at elevated temperatures during the geologic time scale, determining the amount of $^4He$ existing today in natural samples. For example, He diffusion in apatite is known to be very rapid compared to that in most other minerals, causing a significant diffusive loss at ${\sim}80^{\circ}C$ or higher. At ${\sim}40^{\circ}C$, He diffusion in apatite becomes slow enough to preserve most $^4He$ in the sample. Thus, an apatite's (U-Th)/He age represents the timing when the sample passed through the temperature range of $80-40^{\circ}C$. The crustal depth corresponding to this temperature range is called a "partial retention zone." Normal closure temperatures for a typical grain size and cooling rate are ${\sim}60-70^{\circ}C$ for apatite and ${\sim}200^{\circ}C$ for zircon and titanite. Because the apatite He closure temperature is lower than that of most other thermochronometers, it can provide critical constraints on relatively recent or shallow-crustal exhumation histories.