• Title/Summary/Keyword: low yield ratio

Search Result 531, Processing Time 0.029 seconds

Effect of different seedling ages and transplanting times on growth and yield of Indica × Japonica rice for noodle processing

  • Kim, Sang Yeol;Oh, Seong Hwan;Seo, Jong Ho;Yi, Hwi Jong;Hwang, Chung Dong;Bae, Hyun Kyung;Choi, Won Yeong;Oh, Myung Kyu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.327-327
    • /
    • 2017
  • The effect of different seedling ages and transplanting times on the growth and yield of Indica ${\times}$ Japonica rice for noodle processing was evaluated to develop a high yielding cultivation technology for increasing the competition against the imported foreign rice. Four seedling ages (10-, 20-, 30- and 33-day old) of two Indica ${\times}$ Japonica rice cultivars (cvs. Saemimyeon and Palbangmi) and three transplanting dates (May 20, May 30 and June 9) were used in the study. Our results showed that the growth and rice yield of the two cultivars were significantly affected by the different seedling ages and transplanting times. Dry matter production at the panicle heading of the two rice cultivars were generally higher in the 30-day old seedling than the other seedling age treatments and then gradually decreased as the transplanting time was delayed from May 20 to June 9. Similar high panicle number per square meter were recorded at the 30-day old seedling between May 20-May 30 transplanting times. In contrast, other yield parameters that includes spikelet number per panicle, 1,000-brown rice weight, and ripened grain ratio (except for the June 9 transplanting time of Palbangmi) were not significantly affected. The milled rice yield of Saemimyeon was higher than that of the Palbangmi regardless of seedling ages and it was also the highest at the 30-day old seedling with four seedling ages. The milled rice yield of Saemimyeon was only slightly decreased as the transplanting time was delayed from the May 20 to June 9 but Palbangmi had a significantly lower milled rice yield at June 9 transplanting due to the low ripened grain ratio. The result indicates that the most suitable seedling age for the cultivars tested was at 30-day old seedling for noodle processing rice and recommended transplanting times were between May 20 and May 30 for the high rice yield in the Yeongnam plain area.

  • PDF

Influence of Soil Chemical Properties in Ginseng Field on the Growth and the Yield of Ginseng (인삼포지(人蔘圃地)의 토양화학성(土壌化学性)이 생육(生育) 및 수량(收量)에 미치는 영향(影響))

  • Lee, Il-Ho;Yuk, Chang-Soo;Han, Kang-Wan;Nam, Ki-Yeui;Bae, Hyo-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.13 no.4
    • /
    • pp.99-105
    • /
    • 1981
  • To find the relationship between the adequate amount of soil chemical components and ginseng growth including root weight, 49 farmer's red ginseng field from the main ginseng growing area were studied intensively. 1. The ranges of soil chemical component of high yield ginseng field were 8.9 to 14.5 me/100g of CEC 1.5 to 3.5% of organic matter, 45 to 257 ppm of available phosphorus, 0.34 to 0.55 me/100g of potassium and 0.002 to 0.012 of K/P ratio respectively. 2. Higher content of organic matter, CEC, exchangeable potassium and higher rate of K/P were observed in soils of ginseng field with high yield than in soils of low one. The CEC content in soil was positively correlated with the plant growth, and available phosphate content in soil was negatively correlated with yield of ginseng root. 3. There was highly positive significant correlation between root yield of ginseng and K/P ratio of ginseng soil. Similar result also observed between root yield of ginseng and K/P ratio of upper part of ginseng plant.

  • PDF

Effect of PFO/Coal-tar Blending Ratio on Yield and Physical Properties of Pitch-based Activated Carbon (열분해유/콜타르 혼합비가 피치계 활성탄의 수율 및 물성에 미치는 영향)

  • Tae Ung Yoo;Sang Wan Seo;Ji Sun Im;Soo Hong Lee;Woo Jin Song;Seok Chang Kang
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.107-114
    • /
    • 2024
  • In order to produce high-yield pitch-based activated carbon, pitch was synthesized by blending pyrolysis fuel oil (PFO) and coal-tar. Pitch was synthesized by varying the amount of coal-tar from 0~20% compared to PFO and reacting at 380~420 ℃ for 3 h. The synthesized pitch had a softening point between 80 and 260 ℃, and yields ranged from 10 to 40%. At all synthesis temperatures, as the coal-tar blending ratio increased, the yield increased and the softening point decreased. After considering the selected pitches (softening points: 230~260 ℃), pitches containing coal-tar were more volatile at a low boiling point and had a higher residual carbon content. This is a difference in the composition of coal-tar and PFO, and it was con- firmed that coal-tar has a lot of aromatics and PFO has a lot of aliphatics. The selected pitch was heated to 950 ℃ in a tubular reactor and physically activated with steam for 1 hour. Activated carbon containing coal-tar showed higher yield and microporosity compared to only PFO. In this study, the effect of increasing activated carbon yield by blending pitch raw materials was confirmed, and the physical activation characteristics according to the coal-tar mixing ratio were examined.

Steam Gasification Characteristics of Wood Pellet (우드펠릿의 스팀가스화 특성)

  • Hwang, Hoon;Lee, Moon-Won;Choi, Sun-Yong;Kim, Lae-Hyun
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.215-220
    • /
    • 2010
  • Hydrogen is a clean and efficient energy source and is expected to take an important role in future energy demand. A possibly good route to produce hydrogen is by using biomass and organic wastes as a source through thermo-chemical conversion technology. In this study, pyrolysis of wood Pellet(Oregon pine) has been carried out in batch type fixed-bed reactor in $N_2$ atmosphere during 20 minutes to determine the optimum hydrogen generating conditions. At the influence of temperature, hydrogen yield was increased with increasing temperature. For the influence of Steam/Biomass Ratio(SBR), hydrogen yield was increased by steam addition at low temperature condition. However, effect of steam addition was insignificant over at SBR = 1. The hydrogen yield was increased with increasing SBR at high temperature condition. From result of $H_2$/CO and $H_2/CH_4$ ratio, dominant reaction was steam reforming in this experimental condition. The optimum condition for hydrogen production was determined as follows: $H_2$ yield = 38.3 vol.% (56.01 L/min kg) at $900^{\circ}C$, SBR=3.

Evaluating rheological properties of excavated soil for EPB shield TBM with foam and polymer (폼과 폴리머를 활용한 EPB 쉴드 TBM 굴착토의 유동학적 특성 평가)

  • Byeonghyun Hwang;Minkyu Kang;Kibeom Kwon;Jeonghun Yang;Hangseok Choi
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.387-401
    • /
    • 2023
  • The Earth Pressure Balanced (EPB) Shield Tunnel Boring Machine (TBM) is widely employed for constructing urban underground spaces due to its minimal vibration and low noise levels. The injection of additives offers several advantages, including maintaining shield chamber pressure, reducing shear strength, minimizing cutter wear, and decreasing the permeability of the excavated soil. This technique is known as soil conditioning and involves the application of additives such as foam, polymer, and bentonite slurry. In this study, weathered granite soil commonly encountered at domestic tunnel sites was used as a soil specimen. Foam and polymer were applied as additives to assess the rheological properties of conditioned soils. The workability was evaluated through slump tests, while the rheological properties were assessed through laboratory pressurized vane shear tests conducted under the same conditions. Specially, the polymer was applied under specific conditions with low workability with high slump values, with the aim of evaluating the impact of polymer application. The test results revealed that with an increase in the Foam Injection Ratio (FIR), the slump value also increased, while the torque, peak strength, yield stress, apparent viscosity, and thixotropic area decreased. Conversely, an increase in the Polymer Injection Ratio (PIR) led to results opposite to those of FIR. Additionally, a correlation between the slump value and yield stress was proposed. When comparing conditions with only foam applied to those with both foam and polymer applied, even with similar slump values, the yield stress was found to be lower in the latter conditions.

A Performance Evaluation of the MPEG USAC with Variable Core-Band Down-Sampling Ratio (가변 핵심 대역 하향 표본화 비를 가진 MPEG USAC 성능 평가)

  • Lee, Jae Hwa;Kim, Rin Chul
    • Journal of Broadcast Engineering
    • /
    • v.18 no.1
    • /
    • pp.106-114
    • /
    • 2013
  • This paper deals with the effect of the internal sampling frequency and core band down sampling ratio on the overall performance of the MPEG USAC. Here, the internal sampling frequency is the sampling frequency of a signal actually coded. The core band down sampling ratio is the ratio of the width of the core band over that of the coded band. The performance was measured on 6 different test sound sources by the MUSHRA test with 10 subjects. The experiments showed that 1/3 or 1/4 core band down sampling ratio could yield the better performance than the conventional 1/2 ratio, especially at low rates.

Effect of Light Transmission Ratio and Soil Moisture Content on Growth Characteristics of Seedling in Panax ginseng C. A. Meyer (투광율과 토양수분함량이 묘삼(苗蔘) 생육에 미치는 영향)

  • Lee, Sung-Woo;Kim, Chung-Guk;Hyun, Dong-Yun;Yeon, Byeong-Yeol;Lee, Kwang-Won;Cha, Seon-Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.4
    • /
    • pp.207-210
    • /
    • 2008
  • It is very important factors to control optimal light transmission ratio and soil moisture content in order to produce good quality of ginseng seedling. To study the effect of light transmission ratio (LTR) and soil moisture content(SMC) on growth characteristics and yield of ginseng seedling, LTR was controlled by three level such as 21.2, 24.8% and 30.3%, and SMC was plotted by four level of 11.0%, 12.5%, 15.3% and 18.9% at the greenhouse. Chlorophyll content was gradually decreased in the low LTR (21.2%), while it was distinctly decreased by the decrease of SMC in excessively high LTR (30.3%). The decrease of SMC in the high LTR increased heat injury ratio distinctly, while heat injury ratio in the low LTR was only increased when SMC was very low such as 11.0%. All of fresh root weight per Kan (3.3$m^2$), root weight per plant, and the number of usable seedling were distinctly decreased by the increase of LTR and the decrease of SMC. Excessive increase of LTR in optimal SMC (18.9%) hadn't a great effect on the decrease of root weight, while root weight in low SMC was distinctly decreased by the increase of LTR. Ratio of rusty root was distinctly increased in the condition that both of LTR and SMC were high. Ratio of rusty root in the excessively high LTR was gradually fallen off by decrease of SMC, but its ratio in low SMC didn't changed distinctly by the decrease of SMC.

Farbrication of Repeated 3D Shapes using Magnetorheological Fluid Polishing (자기유변유체 연마공정을 응용한 미세부품의 형상가공)

  • Kim Y.J.;Min B.K.;Lee S.J.;Seok J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1265-1268
    • /
    • 2005
  • Due to the increase of the need for reliable high density information storage devices, the demand for precise machining of the slider in HDD is rapidly growing. The present fabrication process of slider bears some serious problems such as low yield ratio in mass production, which is mainly caused by inefficient machining processes in shaping camber and crown on the slider. In order to increase slider yield ratio in HDD, a new systematic machining process is proposed and developed in this work. This new machining process includes the use of magnetorheological (MR) fluid, a smart polishing material generally used for ultra-fine surface finishing of micro structures. It is shown that the process proposed in this work enables to make camber and crown pattern in the scale of few tens of nanometers. Experiment results shows that the MR polishing can be also used for shaping process of micro structures.

  • PDF

The Effect of Melamine Sulphonate High-Range Water Reducing Agent to the Fluidity of High-Flowability Paste (고유동페이스트의 유동특성에 미치는 멜라민계 고성능가수제의 영향)

  • Nam Ji-Hyun;Cho Eun-Young;Oh Sang-Gyun;Kim Jung-Kil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.71-74
    • /
    • 2005
  • The viscosity of high-flowability paste is very high compared to normal concrete for the low water-binder ratio(W/B). Therefore, high-flowability concrete is positively necessary to high-range water reducing agent. High-Flowability paste can make much higher fluidity with no occurrence of segregation, by its higher viscosity and lower yield value than normal concrete. The flowability of high-flowability paste must be evaluated not only by convention consistency test such as slump test but also by the base of the rheological properties of the fresh concrete. The purpose of this study is to analyze the fluidity of high-flowability paste according to the addition ratio of the Melamine Sulphonate high-range water reducing agent.; high-flowability paste is considered as Bingham plastic fluid with the rheology parameters of the plaste viscosity and yield value.

  • PDF

Correlation Between M-A Constituents and Tensile Properties in the Intercritical Coarse Grained HAZ of an Ultra Low Carbon Steel (극 저탄소강의 Intercritical coarse grained HAZ에서의 M-A상과 인장특성 간의 상관관계)

  • Lee, Yoon-Ki;Moon, Joon-Oh;Kim, Sang-Hoon;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.99-103
    • /
    • 2010
  • It is well known that martensite-austenite (M-A) constituents are formed in the intercritically reheated coarse grained heat affected zone (ICCGHAZ) of a multipass weld and they act on the local brittle zone (LBZ) in the welded structures. To investigate the effect of M-A constituents on the tensile properties of ICCGHAZ, specimens with M-A constituents of different volume fraction and size were prepared through the multipass welding cycles simulated by a Gleeble simulator and then tensile test was carried out. The results indicated that finely distributed M-A constituents contributed to decrease the yield ratio, which is mainly due to the increased tensile strength.