• Title/Summary/Keyword: low yield ratio

Search Result 531, Processing Time 0.027 seconds

Increase of the Mixing Ratio of KONP in Producing Newsprint (신문용지 생산에 있어서 국내 신문고지 혼입량 증대에 관한 연구)

  • 백기현;김용석;안병준;손상돈
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • This study was performed to investigate the deinkability of Korean old newspaper(KONP) and the properties of newsprint made from deinked pulp with some addition of virgin pulp. When the samples of composed of 50% Australian old magazine(AuOMG) and 50% KONP were compared with the samples 50% AuOMG and 50% AuONP, the yield, opacity, strength properties of the former were high, but its brightness was low. When the mixing ratio of AuOMG : AuONP : KONP was 30:20:50, the brightness and strength properties were obtained the similar or better than those obtained samples having other mixing ratio. The brightness and opacity of samples made from deinked pulp with the some addition of TMP and BKP can meet the minium qualifications of brightness and opacity specified by Japanese Industrial Standard. The samples, which DIP, TMP, and KP were mixed with the ratio of the 85:10:5 and 90:5:5, maintained higher brightness and strength comparing to the samples containing higher amount of virgin pulp. Since the newsprint samples made from KONP was not inferior to those from imported old newspaper, the more use of KONP in producing newsprint is recommended.

  • PDF

Emergy Evaluation of Korean Agriculture (한국 농업의 에머지 평가)

  • Kang, Daeseok
    • Journal of Environmental Science International
    • /
    • v.26 no.9
    • /
    • pp.1087-1099
    • /
    • 2017
  • Emergy methodology was used to analyze the biophysical basis of Korean agriculture and assess its sustainablility. Total yearly emergy input into Korean agriculture was $7.72{\times}10^{22}sej/yr$ in 2013. Purchased inputs were the dominant emergy source, accounting for 90.1% ($6.95{\times}10^{22}sej/yr$) of the annual input. This clearly indicates that the Korean agriculture is a modern, industrialized system that depends mostly on market goods and services derived from nonrenewable resources. The monetary equivalent of the total emergy input was 18.9 trillion \/yr, 1.5 times greater than the total production cost from farm expense surveys. Emergy return on investment of Korean agriculture was low, with an emergy yield ratio of 1.11. Korean agriculture appears to exert pressure on the environment as revealed by the high environmental loading ratio of 9.30. With very low emergy input from renewable sources (9.7%) and high environmental pressure, Korean agriculture is not sustainable, with an emergy sustainability index of 0.12. This study suggests that higher use efficiency of and lower dependence on nonrenewable purchased inputs need to be prioritized in an effort to enhance the sustainability of Korean agriculture.

Water Gas Shift Reaction Research of the Synthesis Gas for a Hydrogen Yield Increase (수소 수율 증가를 위한 합성가스의 수성가스전환 반응 연구)

  • Kim, Min-Kyung;Kim, Jae-Ho;Kim, Woo-Hyun;Lee, See-Hoon
    • New & Renewable Energy
    • /
    • v.5 no.2
    • /
    • pp.9-14
    • /
    • 2009
  • Automobile Shredder Residue (ASR) is very appropriate in a gasification melting system. Gasification melting system, because of high reaction temperature over than $1,350^{\circ}C$, can reduce harmful materials. To use the gasification processes for hydrogen production, the high concentration of CO in syngas must be converted into hydrogen gas by using water gas shift reaction. In this study, the characteristics of shift reaction of the high temperature catalyst (KATALCO 71-5M) and the low temperature catalyst (KATALCO 83-3X) in the fixed - bed reactor has been determined by using simulation gas which is equal with the syngas composition of gasification melting process. The carbon monoxide composition has been decreased as the WGS reaction temperature has increased. And the occurrence quantity of the hydrogen and the carbon dioxide increased. When using the high temperature catalyst, the carbon monoxide conversion ratio ($1-CO_{out}/CO_{in}$) rose up to 95.8 from 55.6. Compared with average conversion ratio from the identical synthesis gas composition, the low temperature catalyst was better than the high temperature catalyst.

  • PDF

Production of Poly-$\beta$-hydroxybutyrate from Methanol by Fed-batch Cultivation of methylobacterium sp. GL-10 (Methylobacterium sp. GL-10의 유가식 배양에 의한 Methanol로 부터 Poly-$\beta$-hydroxybutyrate의 생산)

  • 이호재;이용현
    • KSBB Journal
    • /
    • v.6 no.1
    • /
    • pp.35-43
    • /
    • 1991
  • The production of poly-$\beta$-hydroxybutyrate(PHB) from methanol by batch and fed-batch cultivations of Methylobacterium sp. GL-10 was studied. PHB accumulation was stimulated by the nutrients deficiency including, NH4+, SO42-, and K+. The nitrogen deficiency was the most critical factor for PHB accumulation. In batch cultivation, the maximum cell concentration and PHB content were 1.86g/l and 0.62g/l, respectively, with 1.0%(v/v) of methanol and 0.5g/1 of ammonium sulfate. The mass doubling time of Methylobacterum sp. GL-10 was in the range of 4-5 hrs. The cell growth and PHB accumulation were severely inhibited at the methanol concentration over than 2% (v/v). To overcome methanol Inhibition, constant feeding and intermittent feedillg fed-batch cultivations were adopted, using C/N molar ratio as a control factor. In constant feeding fed-batch process, cell concentration was increased up to 2.67g/1, and PHB yield was enhanced from 0.33 of batch culture to 0.53. The relatively low cell concentration was caused by methanol accumulated in culture broth at late growth phase. To prevent methanol accumulation and to maximize PHB production, DO-state intermittent fed-batch cultivation was attempted. The cell and PHB concentration was reached up to 4.55g/1 and 1.80g/1, respectively. It was possible to maintain methanol concentration low and also to feed nutrient of desired C/N molar ratio.

  • PDF

Optimization of Maca (Lepidium meyenii) Extraction for Natural Beverage Development using Enzyme Treatment (효소처리에 의한 천연 마카음료 개발을 위한 최적 추출 조건)

  • Kim, Jeong-Ah;Im, Moo-Hyeog
    • Journal of the Korean Society of Food Culture
    • /
    • v.34 no.3
    • /
    • pp.361-368
    • /
    • 2019
  • The purpose of this study was to establish the best optimized extraction condition for the optimal development of fresh maca beverage using low temperature extraction and enzyme treatment. Low temperatures were applied to prevent heat-related nutritional loss during the extraction process. Best extraction conditions were investigated based on the ratio of maca to water, the ratio of enzymes, extraction temperature and time, and agitation. The optimal enzyme conditions were also examined after the treatment of cellulase:pectinase mixture to maintain the original color and flavor, as well as to increase the extraction yield. When cellulase:pectinase was 1:1, the extraction rate ranged from 77.84 to 79.29%. In addition, the best extraction rate was found when maca was mixed with twice volume of water and incubated at $45^{\circ}C$ ($84.05{\pm}0.32%$) with 90 rpm ($87.13{\pm}0.46%$) agitation for 3 hours ($84.73{\pm}0.29%$). Furthermore, sensory evaluation showed a high score in flavor, sweetness, and overall acceptability after adding 3% jujube concentrate into a fresh maca beverage.

Evaluation of lines of NERICA 1 introgressed with Gn1a and WFP for yield and yield components as affected by nitrogen fertilization in Kenya

  • Makihara, Daigo;Samejima, Hiroaki;Kikuta, Mayumi;Kimani, John M.;Ashikari, Motoyuki;Angeles-Shim, Rosalyn;Sunohara, Hidehiko;Jena, Kshirod K.;Yamauchi, Akira;Doi, Kazuyuki
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.323-323
    • /
    • 2017
  • In many sub-Saharan African countries, boosting rice production is a pressing food security issue. To contribute to the increase in rice production, we have developed lines of NERICA 1 introgressed with the gene for spikelet number, Gn1a, and the gene for primary rachis-branch number, WFP by cross breeding. The performance of rice lines introgressed with the genes for yield related traits can be affected by cultivation environment and management. Thus, in this study, we aimed to evaluate the lines of NERICA 1 introgressed with Gn1a or/and WFP for yield and yield components under different nitrogen fertilization conditions in Kenya. A field trial was conducted at a paddy field in Kenya Agricultural and Livestock Research Organization-Mwea, Kirinyaga County ($0^{\circ}39^{\prime}S$, $0^{\circ}20^{\prime}E$) from August 2016 to January 2017. Eight lines of NERICA 1 introgressed with Gn1a and/or WFP, and their parents, NERICA 1 and ST12, were grown under 0 (NF) and $75(SF)kg\;N\;ha^{-1}$. At maturity, five hills per plot were harvested to determine the yield and yield components. The number of primary and secondary rachis-branches per panicle was measured on the longest panicle in each hill. Under SF, the introgression of WFP to NERICA 1 increased the number of primary and secondary rachis-branches by 27 and 25%, respectively. On the other hand, Gn1a did not increase the number of primary rachis-branches, whereas the number of secondary rachis-branches was increased by 38% on average. The number of primary and secondary rachis-branches of the lines introgressed with both genes increased by 25 and 56%, respectively. Although grain number per panicle increased 33% by Gn1a, 34% by WFP, and 43% by Gn1a+WFP, the yield increase by Gn1a, WFP, and Gn1a+WFP was only 14, 7, and 14%, respectively. The suppression of the yield increase was mainly attributed to the decline in the filled grain ratio. Under NF, WFP increased the number of primary and secondary rachis-branches by 20 and 19%, respectively. The introgression of both genes increased the former and the later by 19 and 35%, respectively. However, Gn1a did not change them under NF. Thus, even under NF, grain yield increased 11% by WFP and 24% by Gn1a+WFP due to the increased grain number although filled grain ratio declined. Our findings suggest that the introgression of Gn1a and WFP could contribute to the rice productivity improvement in sub-Saharan Africa even under low fertility conditions. Improving filled grain ratio of the lines introgressed with these genes by further breeding and fertilization management will be the focus of subsequent work.

  • PDF

Experimental study on the performance of compensation grouting in structured soil

  • Zheng, Gang;Zhang, Xiaoshuang;Diao, Yu;Lei, Huayang
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.335-355
    • /
    • 2016
  • Most laboratory test research has focused on grouting efficiency in homogeneous reconstituted soft clay. However, the natural sedimentary soils generally behave differently from reconstituted soils due to the effect of soil structure. A series of laboratory grouting tests were conducted to research the effect of soil structure on the performance of compensation grouting. The effects of grouting volume, overlying load and grouting location on the performance of compensation grouting under different soil structures were also studied. Reconstituted soil was altered with added cement to simulate artificial structured soil. The results showed that the final grouting efficiency was positive and significantly increased with the increase of stress ratio within a certain range when grouting in normally consolidated structured clay. However, in the same low yield stress situation, the artificial structured soil had a lower final grouting efficiency than the overconsolidated reconstituted soil. The larger of normalized grouting volume could increase the final grouting efficiency for both reconstituted and artificial structured soils. Whereas, the effect of the overlying load on final grouting efficiencies was unfavourable, and was independent of the stress ratio. As for the layered soil specimens, grouting in the artificial structured soil layer was the most efficient. In addition, the peak grouting pressure was affected by the stress ratio and the overlying load, and it could be predicted with an empirical equation when the overlying load was less than the yield stress. The end time of primary consolidation and the proportion of secondary consolidation settlement varied with the different soil structures, grouting volumes, overlying loads and grouting locations.

Autothermal Reforming of Methane using Metallic Monolith Catalyst Coated Ni/CeO2-ZrO2 (금속모노리스에 부착된 Ni/CeO2-ZrO2를 이용한 메탄의 자열개질반응)

  • Lee, Tae Jun;Cho, Kyung Tae;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.663-668
    • /
    • 2007
  • The autothermal reforming reaction of methane was investigated to produce hydrogen with $Ni/CeO_2-ZrO_2$ catalysts. Alumina-coated honeycomb monolith was applied in order to obtain high catalytic activity and stability in autothermal reforming of methane. Metallic monolithic catalyst showed better methane conversion than that of powder type at high reaction temperature. It was confirmed that $H_2O/CH_4/O_2$ ratio was important factor in autothermal reforming reaction. $H_2$ yield was increased as $H_2O/CH_4$ ratio increased. Methane conversion was improved as $O_2/CH_4$ ratio was increased, whereas, the yield of $H_2$ was decreased. The catalytic activity for $Ni/CeO_2-ZrO_2$ catalyst with 0.5 wt% Ru loading was improved at low reaction temperature.

Effect of Carbon and Nitrogen concentration on Lipid production by Rhodotorula sp. (Rhodotorula sp. 의 균체유지 생산에 미치는 탄소원과 실소원 농도의 영향)

  • 김진원;강신권;성낙계
    • Microbiology and Biotechnology Letters
    • /
    • v.12 no.4
    • /
    • pp.271-276
    • /
    • 1984
  • Effect of C/N ratios on the cell growth, cell lipid, cell protein and fatty acids of Rhodotorula sp. was examined. At low concentration of nitrogen in cultural medium the growth of the yeast was retarded, whereas its growth was favorable at high concentration but lipid yield was decreased due to a high content of cell protein. In order to increase lipid yield, the optimum C/N ratio obtained was 45-50 (5% glucose, 0.0414% nitrogen). During the cultivation cell protein synthesis occurred mainly in initia stage and the lipid was accumulated rapidly at the late phase. The highest content of total fatty acid was observed at the optimum C/N ratio. The higher C/N ratio was the more unsaturation degree of fatty acid decreased. It was attributed principally to a decreased oleic acid with palmitic acid increased. No significant changes occurred in content of other fatty acids.

  • PDF

Developing Trend of High Strength and Good Toughness Linepipe Steel (고강도-고인성 라인파이프강 개발 동향)

  • Yoo, Jang-Yong;Kang, Ki-Bong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.216-221
    • /
    • 2004
  • Linepipe steels with a low carbon acicular ferrite microstructure have been recently developed to accommodate the current transportation condition of the gas and oil industry, and they are finally applied to West- East pipeline project in China. By adopting acicular microstructure, both better formability and better toughness could be obtained due to low yield ratio and fine grained microstructure. Mechanical properties of pipe are not greatly different from those of base plates or hot coils with a microstructure of acicular ferrite. Merits of introducing higher strength steels are well known, i.e., reducing the gauge of pipe and the material cost, increasing the welding speed and decreasing construction cost because of reducing the construction period. Threfore, gas and oil industry has required higher strength steel than APIX70 grade steel. Under this background, API-X80 steel has been developed and shall be applied to the several projects. In this paper, developing stage of API-X80 steel is also presented and discussed.

  • PDF