• 제목/요약/키워드: low water depth

Search Result 678, Processing Time 0.029 seconds

Water Mass Distribution and Currents in the Vicinity of the Hupo Bank in Summer 2010 (2010년 하계 후포퇴 근해의 수괴분포와 해류)

  • Lee, Jae Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.1
    • /
    • pp.61-73
    • /
    • 2016
  • Water mass distribution and currents were investigated off the east coast of Korea near the Hupo Bank using the CTD and ADCP data from June to August 2010. The typical water masses were: (1) Tsushima Surface Water (TSW) from the East Korean Warm Current (EKWC) in the surface layer, (2) a shallow thermocline at 20-30 m depth, (3) Tsushima Middle Water (TMW) of high salinity (>34.2) below the pycnocline, (4) North Korean Cold Water (NKCW) of low salinity (<34.05) and low temperature (<4°C) in the lower layer. In June, a double eddy was observed in which a cold filament intruded cyclonically from the south around a pre-existing cold-core eddy. A burst of strong southward current was recorded in mid-August due to a warm filament from the meandering EKWC. Current in the N-S direction was predominant due to topographic effects, and the direction of the northward EKWC was frequently reversed in its direction due to the eddy-filament activity, whereas the influence of the wind was not noticeable. The vertical structure of the current was of a two-layer system, with the northward EKWC in the upper layer and weak southward flows corresponding to the North Korean Cold Current (NKCC) in the deeper layer.

On the Abnormal Low Temperature Phenomenon of the Yellow Sea Bottom Cold Water in Summer, 1981 (1981年 夏季 黃海底層冷水의 理想底水溫現象)

  • Yang, Sung-Ki;Cho, Kyu-Dae;Hong, Chol-Hoon
    • 한국해양학회지
    • /
    • v.19 no.2
    • /
    • pp.125-132
    • /
    • 1984
  • The abnormal low water temperature phenomenon of the Yellow Sea Bottom Cold Water in summer, 1981 is studied on the basis of the oceanographical data collected by the National Fisheries University of Pusan in July, 1981 and Fisheries Research and Development Agency of Korea from 1960 to 1981 and meteorological data within the same 22 years. In winter, 1980 the northwesterly monsoon was vary predominant and the air temperature was lower than that of mean year by 1∼8$^{\circ}C$ and also the surface temperature was lower 1∼3$^{\circ}C$. And then the temperature of the Yellow Sea Bottom Cold Water in summer, 1981 became lower 2∼3$^{\circ}C$ than that of mean year and the influence of this cold water was extended to about 50 miles off the coast of Cheju Island. Comparing with mean year, the water temperature at 30m depth in February, 1981 was lower by 1∼2$^{\circ}C$ in entire regions except near sea of Sohuksando and at 50m depth in August, 1981, it was lower by about 3.5$^{\circ}C$. Particularly, the offshore of Hongdo shower value of 5$^{\circ}C$ than that of mean year. It was found that the abnormal low water temperature phenomenon of Yellow Sea Bottom Cold Water in summer, 1981 resulted from the sea surface cooling by the predominant northwestly monsoon and abnormally low air temperature in winter, 1980.

  • PDF

Evaluation of bias and uncertainty in snow depth reanalysis data over South Korea (한반도 적설심 재분석자료의 오차 및 불확실성 평가)

  • Jeon, Hyunho;Lee, Seulchan;Lee, Yangwon;Kim, Jinsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.9
    • /
    • pp.543-551
    • /
    • 2023
  • Snow is an essential climate factor that affects the climate system and surface energy balance, and it also has a crucial role in water balance by providing solid water stored during the winter for spring runoff and groundwater recharge. In this study, statistical analysis of Local Data Assimilation and Prediction System (LDAPS), Modern.-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), and ERA5-Land snow depth data were used to evaluate the applicability in South Korea. The statistical analysis between the Automated Synoptic Observing System (ASOS) ground observation data provided by the Korea Meteorological Administration (KMA) and the reanalysis data showed that LDAPS and ERA5-Land were highly correlated with a correlation coefficient of more than 0.69, but LDAPS showed a large error with an RMSE of 0.79 m. In the case of MERRA-2, the correlation coefficient was lower at 0.17 because the constant value was estimated continuously for some periods, which did not adequately simulate the increase and decrease trend between data. The statistical analysis of LDAPS and ASOS showed high and low performance in the nearby Gangwon Province, where the average snowfall is relatively high, and in the southern region, where the average snowfall is low, respectively. Finally, the error variance between the four independent snow depth data used in this study was calculated through triple collocation (TC), and a merged snow depth data was produced through weighting factors. The reanalyzed data showed the highest error variance in the order of LDAPS, MERRA-2, and ERA5-Land, and LDAPS was given a lower weighting factor due to its higher error variance. In addition, the spatial distribution of ERA5-Land snow depth data showed less variability, so the TC-merged snow depth data showed a similar spatial distribution to MERRA-2, which has a low spatial resolution. Considering the correlation, error, and uncertainty of the data, the ERA5-Land data is suitable for snow-related analysis in South Korea. In addition, it is expected that LDAPS data, which is highly correlated with other data but tends to be overestimated, can be actively utilized for high-resolution representation of regional and climatic diversity if appropriate corrections are performed.

An Observational Study on the Temperature Rising Effects in Water Warming canal and Water Warming Pond (온수로 및 온수지에서의 수온상승효과에 관한 조사연구)

  • 홍종백;홍성범
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.31-38
    • /
    • 1990
  • The power water flowed out from the multipurpose darn influences the ecosystem approximately because of the low water temperature. An appropriate counter measure to the rising water temperature is needed for growing crops especially when the temperature is below 18˚C in the source of the irrigation water This observational study is practiced in Yong-Doo water warming canal and pond in the down stream of Choong-Ju multipurpose dam and is practiced for analyse and compare the rising effects in actural water temperature by actual measurement with the rising effects of planned water temperatuer by the basic theoritical method and for the help to present the direction in plan establishment through investigate the results afterwards. The results are as follows. 1.The degree of the rise of the water temperature can be decided by $\theta$x=$\theta$o +K L--v.h (T-$\theta$˚)Then, K values of a factor representing the characteristics of the water warming canal were 0.00002043 for the type I. and 0.0000173 for the type II. respectively. 2.A variation of water temperature which produced by the difference effective temperature and water temperature in the water warming canal was $\theta$x1 = 16.5 + 15.9(1-e -0.00018x), $\theta$x2 =18.8 + 8.4( 1-e -0.000298x)for the type I. and $\theta$x, = 19.6 + 12.8 ( 1-e -0.00041x) for the type II. 3.It was shown that the effects of the rise of water temperature for the type I. water warming canal were greater than that of type II. as a resultes of broadening the surface of the canal compared with the depth of water, coloring the surface of water canal and installing the resistance block. 4.In case of the type I. water warming canal, the equation between the air temperature and the degree of the rise of water temprature could be made ;Y= 0.4134X + 7.728 In addition, in case of the type II. water warming canal, the correlation was very low. 5.A monthly variation of the water temperature in the water warming canal was the highest in August during the irrigation period and the water temperature rose with the air temperature until August. However, it was blunted after then. 6.A rising degree of water temperature of the practical value in the water warming pond was higher than that of the theoritical equation by 69% for the type I. and 57% for the type II. Accordingly, it was possible to acquire the result near the practical value.$\theta$w-$\theta$o=[1-exp{ -h(1+2$\psi$) . X($\theta$w-$\theta$0)XC Here, C values are 1.69 for the type I. and 1.57 for the type II. 7.It was shown that the effect of the rise of water temperature was favorable when the thermal absorption was to be good by coloring the surface of the water warming pond and removing the bottom osmosis. 8.By enlarging the surface of water in comparison with the depth, and by having dead area of water in the water warming pond, this structure in the water warming pond is helpful for the rise of water temperature.

  • PDF

The natural frequency measurement for a suction pile about the intrusion depth (관입깊이에 따른 석션파일 고유진동수 측정 및 분석)

  • Lee, Jong-Hwa;Kim, Min-Su;Seo, Yoon-Ho;Kim, Bong-Ki;Lee, Ju-Shin;Yu, Mu-Sung;Kwak, Dae-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.495-496
    • /
    • 2014
  • The suction method is the substructure installation using the water pressure difference generated by discharging water inside the pile by the pumping operation, after the intrusion by the self-weights of a large hollow steel pipe or a concrete structure. It is known as the low-noise and low-vibration method against the general pile driven method and eco-friendly, also. Most current design and safety assessment of the support structure and considering only the static load, however, the importance of dynamic behavior becomes magnified as the size of wind power generator increases. This study measures the natural frequency of the suction pile prototype about the penetration depth as a part of basic research and analyzed the interaction between the soil and the structure.

  • PDF

Developing a SWMM-HYDRUS model for Enhanced simulation of Low Impact Developments (저영향 개발 모의 향상을 위한 SWMM-HYDRUS 결합 모델 개발)

  • Baek, Sangsoo;Cho, Kyunghwa;Pachepsky, Yakov
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.67-67
    • /
    • 2017
  • 급속한 산업화와 도시화로 인하여, 투수지역은 감소함으로써, 개발전과 다른 지표, 지표하 유출이 나타난다. 이에 대한 대안으로 최근 저영향개발 (LID)이 수문학적 및 환경, 생태적 개선으로 대안으로 대두 되고 있다. 이에 많은 연구자들이 EPA SWMM 모델의 이용하여 LID 설치 전, LID를 모의하였으나, 불포화토양 및 토양 내의 matric head에 대한 고려가 없어 정확한 LID 모의가 힘든 실정이다. 이에 본 연구에서 상세한 토양 모의가 가능 HYDRUS를 이용하여, SWMM-HYDRUS 모델을 개발하였다. EPA SWMM 모델의 경우, 가장 상단의 layer에서 green ampt equation을 이용하여 침투량을 계산 후, 다음 layer에서 Darcy eqation을 이용하여 토양 물이동을 계산되어진다. 하지만 기존의 SWMM모델의 경우, 불포화토양내의 물 흐름에 대한 고려와 Matric head와 Pond depth에 대한 고려가 없어, LID 모의 시 한계점이 나타났다. 이에 본 연구에서는 이러한 한계점을 개선하기 위하여, 기존의 EPA SWMM의 LID 모듈을 Van Genuchten's equaton과 Richard Equation을 이용하여 정확한 토양 물 흐름을 계산하는 HYDRUS을 SWMM 모델에 결합하여, 더욱 정확한 LID 모의를 실시하였다. 개선된 SWMM-HYDRUS 모델의 모의 결과, 기존의 SWMM에서 한계점을 보여주는 Metric head를 고려하여 불포화 침투가 이루어지며, 또한 포화 후 LID 위에 존재하는 Pond depth를 고려해주는 결과가 나타났다. 향후 개발된 SWMM-HYDRUS모델를 이용하여 LID를 검증 시 기존의 모델보다 정확한 모의가 가능하다.

  • PDF

Evaluation for applicability of river depth measurement method depending on vegetation effect using drone-based spatial-temporal hyperspectral image (드론기반 시공간 초분광영상을 활용한 식생유무에 따른 하천 수심산정 기법 적용성 검토)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.235-243
    • /
    • 2023
  • Due to the revision of the River Act and the enactment of the Act on the Investigation, Planning, and Management of Water Resources, a regular bed change survey has become mandatory and a system is being prepared such that local governments can manage water resources in a planned manner. Since the topography of a bed cannot be measured directly, it is indirectly measured via contact-type depth measurements such as level survey or using an echo sounder, which features a low spatial resolution and does not allow continuous surveying owing to constraints in data acquisition. Therefore, a depth measurement method using remote sensing-LiDAR or hyperspectral imaging-has recently been developed, which allows a wider area survey than the contact-type method as it acquires hyperspectral images from a lightweight hyperspectral sensor mounted on a frequently operating drone and by applying the optimal bandwidth ratio search algorithm to estimate the depth. In the existing hyperspectral remote sensing technique, specific physical quantities are analyzed after matching the hyperspectral image acquired by the drone's path to the image of a surface unit. Previous studies focus primarily on the application of this technology to measure the bathymetry of sandy rivers, whereas bed materials are rarely evaluated. In this study, the existing hyperspectral image-based water depth estimation technique is applied to rivers with vegetation, whereas spatio-temporal hyperspectral imaging and cross-sectional hyperspectral imaging are performed for two cases in the same area before and after vegetation is removed. The result shows that the water depth estimation in the absence of vegetation is more accurate, and in the presence of vegetation, the water depth is estimated by recognizing the height of vegetation as the bottom. In addition, highly accurate water depth estimation is achieved not only in conventional cross-sectional hyperspectral imaging, but also in spatio-temporal hyperspectral imaging. As such, the possibility of monitoring bed fluctuations (water depth fluctuation) using spatio-temporal hyperspectral imaging is confirmed.

Instream Flow Estimation for Gap-Stream Watershed Considering Ecosystem, Landscape, Water-friendly Environment and Water Quality (생태.경관.친수.수질을 고려한 갑천 유역의 하천유지유량 산정)

  • Kim, Tai-Cheol;Lee, Duk-Joo;Moon, Jong-Pil;Lee, Jae-Myun;Gu, Hui-Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.11-20
    • /
    • 2007
  • In order to make the way to determine the instream flow more practically, we have investigated many case studies and reviewed reports and papers. To validate instream flow level suggested by the case studies, DAWAST and HEC-RAS model were applied to the Gap-stream watershed in Daejeon city. Flow-duration analysis was performed both with the stream flow data gauged in the Indong, Boksu, and Hoeduck stations, and with the stream flow data estimated by the DAWAST model and the specific discharge method. Instream flow was determined among the flow-duration analysis, DAWAST, HEC-RAS model and mass balance approach. It was satisfied with various factors such as target water quality, water depth for eco-system and resorts, water surface width, flow velocity for landscape in dry season. The study suggested that the mean low flow could be replaced into the instream flow for the preliminary study because the instream flow considering ecosystem, landscape, water-friendly environment and water quality was generally close to the mean low flow.

A Study on Efficient Simple Water Supply System in Rural Areas (농촌지역의 효율적인 간이 상수처리에 관한 연구)

  • 이홍근;백남원;백도현
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.103-115
    • /
    • 1996
  • The purpose of this study was to establish acceptable criteria for the design of simple water treatment plant in rural areas. To develop efficient simple water treatment methods for rural areas, water quality in the study areas was investigated and rapid and slow filtrations in pilot-scale were tested under various conditions. The main results of this study are as follows. It was found that the water qualities of the study areas exceed the drinking water standards, which implies that some treatments are required in rural areas. Treatment efficiencies of both rapid sand and dual-media (sand and anthracite) filtration without pre-treatment such as flocculation and sedimentation are very low, which were turned out to be unadequate for the rural areas. Treatment efficiencies of both vertical and horizontal slow filtration without chlorination are very high for consumed $KMnO_4, NH_3-N, NO_3-N$, turbidity, and very low for coliform and bacteria. Treatment efficiencies of both vertical and horizontal slow filtration with chlorination are very high over the most pollutants. A slow filtration with chlorination is efficient for the rural areas. An adequate depth of sand layer is over 60 cm. A horizontal filtration is more economical than a vertical filtration. A horizontal filtration can be operated for a relatively long periods of time without sand washing or replacement because clogging is removed by simple back-washing.

  • PDF

Status and Efficiency of Wastewater Sea Outfalls in Korea

  • Kwon Seok-Jae;Seo Il-Won;Lee Joong-Woo;Kim Young-Do
    • Journal of Navigation and Port Research
    • /
    • v.29 no.9
    • /
    • pp.783-788
    • /
    • 2005
  • This study provided the status and efficiency of the domestic wastewater sea outfalls based on the previous numerical and experimental studies for the analysis of the buoyant discharges from Rosette diffuser in shallow water. The VISJET model and the hybrid model proposed by Kim (2002) can be proper models for the domestic sea outfalls. The experimental results show that the merging height for MBR and MIR depends on the riser diameter and spacing between risers, and the bending characteristics of the buoyant discharges in still ambient water have significant impacts on the dilution. The current wastewater outfall systems in Korea are not effective for the environmental aspect due to the low discharge water depth. The strategies to reduce the contamination near the domestic wastewater outfalls were found to require the sufficient discharge water depth, proper diffuser location considering the tidal currents, enough riser diameter, and sufficient spacing between risers.