• Title/Summary/Keyword: low velocity

Search Result 2,854, Processing Time 0.037 seconds

A study on the presumption method of automobile velocity just before braking, using a accelerometer. (가속도계를 이용한 제동직전의 차속추정방법에 관한 연구)

  • 강영규;한응교;조진호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.32-38
    • /
    • 1980
  • In the case of a automobile marking skid on road for a period of braking, in general, the automobile velocity just before rapid braking can be obtained by evaluating the coefficient of friction between tires and road. Up to now, the coefficient of friction has been derived from mean velocity measured by a time watch, but the automobile velocity obtained in this manner would be deviated from actual value considerably, due to errors arising from not only measuring time but other various factors. In this paper the presumption method of automobile velocity by accelerometer is presented so as to improve the accuracy of measurement, and to determine the velocity readily. The results obtained in this experiment show that the frictional coefficients between tires and road under the given experimental conditions are considered to take linear relation over the fixed velocity limits 30km/h to 50km/h while for the same limits of velocities the coefficients of friction by the time watch method are not valid ar low velocity range. It will be seen that the former is simple and reliable whilst the latter is cumbersome and unreliable.

  • PDF

1-D Shear Wave Velocity Structure of Northwestern Part of Korean Peninsula (한반도 북서부의 1차원 전단파 속도구조)

  • Kim, Tae Sung
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.555-560
    • /
    • 2019
  • One-dimensional shear wave velocity structure of North Korea is constrained using short (2-sec) to long period (30-sec) Rayleigh waves generated from four seismic events in China. Rayleigh waves are well recorded at the five broadband seismic stations (BRD, SNU, CHNB, YKB, KSA) which are located near to the border between North and South Korea. Group velocities of fundamental-mode Rayleigh waves are estimated with the Multiple Filter Analysis and refined by using the Phase Matched Filter. Average group velocity dispersion curve ranging from 2.9 to 3.2 km/s, is inverted to constrain the shear wave velocity structures. Relatively low group velocity dispersion curves along the path between the events to BRD at period from 4 to 6 seconds may correspond to the sedimentary sequence of the West Korea Bay Basin (WKBB) in the Yellow Sea. The low velocity zone in deep layers (14-20 km) may be related to the deep sedimentary structure in Pyongnam basin. The fast shear wave velocity structure from the surface to the depth of 14 km is consistent with the existence of metamorphic rocks and igneous bodies in Nangrim massif and Pyongnam basin.

Characteristics of Suspended Fine-Grained Particles in Settling Columns (침강수주에서 부유된 광물성 미립자의 특성)

  • Kim Jong-Woo;Yoon Sei-Eui;Lee Jong-Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.393-398
    • /
    • 2005
  • Suspended fine mineral particles are deposited at the areas with low flow velocity and low transportation capacity in rivers, reservoirs and lakes. It can be contaminated by heavy metals. Examples of problem fields art dredging of sediment, water pollutants, and maintenance of navigation channels and construction works. To deal with the settling problems it is necessary to understand tile physico-chemical characteristics of cohesive sediment under varying density of particle and ion addition(NaOH, HCl, NaCl), which is dissolved in river, because fine-grained cohesive sediment can lead to flocculation with the physico-chemical influences and takes different characteristics. Experiments with fresh and saline water are followed with fine-grained sediments(alumina and quartz) in settling columns. Settling velocity of suspended fine particles in still water was measured with a pressure sensor(maximum 10 mbar). Until the initial concentration of 20,000 mg/1 of alumina and quartz the settling velocity was on the increase. Above this initial concentration was it on the decrease. In an acid condition, which causes strong flocculation, average settling velocity of quartz powder was high. In an alkaline water low average settling velocity of it was observed. However, alumina behaved exactly contrarily.

  • PDF

Application of Seismic Tomography to the Region in and Near Southern Korean Peninsula (한반도 남부의 지진파 토모그라피 연구)

  • Kang, Ik-Bum;Park, Jung-Ho
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.507-524
    • /
    • 2006
  • 3-D seismic tomographic inversion is applied to investigation on velocity structure in and near Korean Peninsula. Firstly, it is applied to the region in southeastern Korean Peninsula. According to the results low-velocity zone seems to be clearly appeared in the so called Gyeongsang sedimentary basin and high-velocity zone is shown at the section of 7.5 km depth it implies the inclusion of plutonic rocks at the sedimentary basin. At the depth about $20{\sim}30$ km existence of low-velocity zone seems to be related with the development of Yangsan fault system. Secondly it is applied to the region not only in Korean Peninsula but also East Sea using data from both Korean Peninsula and Japan Islands. Accorging to the results, subduction zone starting from eastern part of Japan seems to be extended to the region beneath the East Sea.

Design and Development of Electromagnetic Launcher for Low-High Velocity Impact Test (중고속 충돌 실험을 위한 전자기력 발사장치의 설계와 제작)

  • Kim, Hong Kyo;Noh, Hak Gon;Kang, Beom Soo;Kim, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.10
    • /
    • pp.857-864
    • /
    • 2016
  • Many plane, UAV and drone fly in the sky as development of aviation industry. Plane and UAV fly and drone's propellers rotate so fast. Impact between flying objects which have high velocity threats passengers. Also the impact damages people, building and various property. Plane's operating speed is near sound velocity(340m/s), and propeller's rotating speed is less than that. Until now, impact experiment uses gas gun to get speed and the gun needs large space to entirely air expansion. Electromagnetic launcher, especially railgun, needs smaller space than gas gun to get enough speed about 500m/s. This paper explains electromagnetic launcher's operating principle, shows making electromagnetic launcher design guide line and suggests that it is a better apparatus to get low-high velocity.

Prediction of Pulse Pressure and Pulse Interval of Change in Operation Conditions of a Pulse Air Jet Bag Filter (충격기류식 여과집진장치의 운전조건 변화에 따른 적정 탈진주기 및 탈진압력 설정)

  • Lee, Deok-Gi;Lim, Woo-Taik;Cho, Jae-Hwan;Choi, Kum-Chan;Shin, Hyun-Moo;Jang, Seong-Ho;Suh, Jeong-Min
    • Journal of Environmental Science International
    • /
    • v.27 no.6
    • /
    • pp.349-358
    • /
    • 2018
  • In this study, using coke dust from ironwork, the pulse pressure on a pulse air jet bag filter was investigated considering the influence of the pressure loss due to filtration velocity and pressure intervals. The research on the optimal pulse pressure prediction of a pulse air jet type bag filter using coke dust showed the following results. Pressure loss volatility produced by the pulse pressure under low dust concentration(0.5, $1g/m^3$) and low face velocity(1.25 m/min) was less than $10mmH_2O$. This suggests that the pulse pressure has a low impact on the pressure loss. In contrast, pressure loss volatility under high dust concentration($3g/m^3$) and high face velocity(1.75 m/min) was $25mmH_2O$. Therefore, pulse pressure with high dust concentration and high face velocity has a strong influence on the pressure loss volatility, compared to the condition of low dust concentration and low face velocity. The optimal pulse pressure of inlet dust concentration($0.5g/m^3$) was $6kg/cm^2$ under the same face velocity(1.75 m/min). As concentration increased from 1 to $2g/m^3$, the pulse pressure gradually reached $5kg/cm^2$ thus indicating that the pulse pressure($5kg/cm^2$) is pertinent at a high concentration($3g/m^3$). The pulse intervals: 20, 25 and 30 sec, which are relatively longer than 10 and 15 sec, corresponded to high pressure loss volatility produced by the pulse pressure. Furthermore, low pressure loss volatility was noted at $5kg/cm^2$ of the overall pulse pressure.

Evaluation of Floc Formation Conditions for Increasing Flotation Velocity in DAF Process (DAF 공정에서 부상속도 향상을 위한 플럭형성 조건 평가)

  • Kwon, Soon-Buhm;Min, Jin-Hee;Park, No-Suk;Ahn, Hyo-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.245-255
    • /
    • 2006
  • Dissolved air flotation is a solid-liquid separation system that uses fine bubbles rising from bottom to remove particles in water. In order to enhance the flotation velocity and removal efficiency of flocs in the flotation process, we tried to obtain pretreatment conditions for the optimum DAF process operation by comparing and evaluating features of actual floc formation and flotation velocity etc, according to coagulant types and conditions for flocculation mixing intensity by using PIA, PDA, and FSA. Accordingly, generating big flocs that have low density at low flocculation mixing intensity may reduce treatment efficiency. In addition, generating small flocs at high flocculation mixing intensity makes floc-bubbles smaller, which reduces flotation velocity, In this study, it was found that high flocculation mixing intensity could not remove the remaining micro-particles after flocculation, which had negative effects on treated water quality, Therefore, in order to enhance treatment efficiency in a flotation process, flocculation mixing intensity around $50sec^{-1}$ is effective.

Effect of Shear Wave Velocity on Seismic Response of Low- and Mid-Rise Reinforced Concrete Frames (전단파 속도가 중저층 철근콘크리트 구조물의 지진 응답에 미치는 영향)

  • Kim, Minsun;Lee, Chang Seok;Kim, Byungmin;Jeon, Jong-Su
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.249-255
    • /
    • 2024
  • Strong ground motions at specific sites can cause severe damage to structures. Understanding the influence of site characteristics on the dynamic response of structures is crucial for evaluating their seismic performance and mitigating the potential damage caused by site effects. This study investigates the impact of the average shear wave velocity, as a site characteristic, on the seismic response of low-to-medium-rise reinforced concrete buildings. To explore them, one-dimensional soil column models were generated using shear wave velocity profile from California, and nonlinear site response analyses were performed using bedrock motions. Nonlinear dynamic structural analyses were conducted for reinforced concrete moment-resisting frame models based on the regional information. The effect of shear wave velocity on the structural response and surface ground motions was examined. The results showed that strong ground motions tend to exhibit higher damping on softer soils, reducing their intensity, while on stiffer soils, the ground motion intensity tends to amplify. Consequently, the structural response tended to increase on stiffer soils compared to softer soils.

Observational Constraints on the Formation of the Milky Way's Disk

  • Han, Doori;Lee, Young Sun;Kim, Youngkwang;Beers, Timothy C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.51.4-52
    • /
    • 2017
  • We present the derived kinematic characteristics of low-${\alpha}$ thin-disk and high-${\alpha}$ thick-disk stars in the Milky Way, investigated with a sample of about 33,900 G- and K-type dwarfs from the Sloan Extension for Galactic Understanding and Exploration (SEGUE). Based on the level of ${\alpha}$-element enhancement as a function of [Fe/H], we separate our sample into thin- and thick-disk stars and then derive mean velocity, velocity dispersion, and velocity gradients for the U, V and W velocity components, respectively, as well as the orbital eccentricity distribution. There are notable gradients in the V velocity over [Fe/H] in both populations: -23 km s-1 dex-1 for the thin disk and +44 km s-1 dex-1 for the thick disk. The velocity dispersion of the thick disk decrease with increasing [Fe/H], while the velocity.

  • PDF

Theoretical investigation about the hydrodynamic performance of propeller in oblique flow

  • Hou, Lixun;Hu, Ankang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.119-130
    • /
    • 2019
  • This paper establishes an iterative calculation model for the hydrodynamic performance of propeller in oblique flow based on low order potential based surface panel method. The hydrodynamic performance of propeller is calculated through panel method which is also used to calculate the induced velocity. The slipstream of propeller is adjusted according to the inflow velocity and the induced velocity. The oblique flow is defined by the axial inflow velocity and the incident angle. The calculation results of an instance show that the thrust and torque of propeller decrease with the increase of axial inflow velocity but increase with the incident angle. The unsteadiness of loads on the propeller blade surface gets more intensified with the increases of axial inflow velocity and incident angle. However, comparing with the effect of axial inflow velocity on the unsteadiness of the hydrodynamic performance of propeller, the effect of the incident angle is more remarkable.