• Title/Summary/Keyword: low velocity

Search Result 2,854, Processing Time 0.03 seconds

Influence of External Air Velocity for Tribological Characteristics between Sintered Friction Material and Disk (외부 공기속도 변화에 따른 소결마찰재와 디스크간 마찰특성)

  • Lee, Jong Seong;Lee, Hi Sung
    • Tribology and Lubricants
    • /
    • v.29 no.1
    • /
    • pp.19-26
    • /
    • 2013
  • Cu-matrix sintered brake pads and low-alloy heat-resistant steel are commonly applied to basic brake systems in high-energy moving machines. In this research, we analyzed the tribological characteristics to determine the influence of the air velocity between the disk and pad. At a low brake pressure with airflow, the friction stability was decreased as a result of the lack of tribofilm formation at the disk surface. However, there were no significant changes in the friction coefficient under any of the test conditions. The wear rates of the friction materials were decreased with an increase in the airflow velocity. As a result, the airflow velocity influenced the friction stability, as well as the wear rate of the friction materials and disk, but not the friction coefficient.

Investigation of Velocity Boundary Conditions in Counterflow Flames

  • Park, Woe-Chul;Anthony Hamins
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.262-269
    • /
    • 2002
  • The effects of velocity boundary conditions on the structure of methane-air nonpremixed counterflow flames were investigated by two-dimensional numerical simulation. Two low global strain rates, 12 s$\^$-1/ and 20 s$\^$-1/, were considered for comparison with measurements. Buoyancy was conformed to have strong effects on the flame structure at a low global strain rate. It was shown that the location where a top hat velocity profile was imposed is sensitive to the flame structure, and that the computed temperature along the centerline agrees well with the measurements when plug flow was imposed at the inner surface of the screen nearest the duct exit.

MICROPHONE-BASED WIND VELOCITY SENSORS AND THEIR APPLICATION TO INTERACTIVE ANIMATION

  • Kanno, Ken-ichi;Chiba, Norishige
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.596-600
    • /
    • 2009
  • We are developing a simple low-cost wind velocity sensor based on small microphones. The sensor system consists of 4 microphones covered with specially shaped wind screens, 4 pre-amplifiers that respond to low frequency, and a commercial sound interface with multi channel inputs. In this paper, we first present the principle of the sensor, i.e., technique to successfully suppress the influence of external noise existing in the environment in order to determine the wind velocity and the wind direction from the output from a microphone. Then, we present an application for generating realistic motions of a virtual tree swaying in real wind. Although the current sensor outputs significant leaps in a measured sequence of directions, the interactive animations demonstrate that it is usable for such applications, if we could reduce the leaps to some degree.

  • PDF

In Vivo Doppler-Based Measurement of Bending Vibration Velocity in Liver Vibrated by Lo7v Frequency Signal (초음파 Doppler법에 의한 비침투적인 생체조직의 진동속도 계측)

  • 박무훈;장윤석
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.407-412
    • /
    • 1997
  • In this paper, we present a new method to diagnose the characteristics of the soft tissue, especially a liver. In order to diagnose the characteristics of a liver, it is necessary to evaluate the propagation delay time and propagation velocity of bending vibration In a liver. For this purpose, we measure the propagation velocity of bending vibration in a liver for low frequency forced vibration using a standard ultrasonic Doppler diagnosis equipment. We have carried out preliminary experiments by using an ultrasonic probe of 3.5MHz and obtained some results. This new measurement method developed here can be applied to new research and medical fields for acoustic non-invasive diagnosis of soft tissue.

  • PDF

Two Dimensional Shear Wave Velocity Using the Inversion of Surface Waves (표면파 역산을 이용한 2차원 S파 속도구조에 관한 연구)

  • Jung, Hee-Ok
    • Journal of the Korean earth science society
    • /
    • v.21 no.6
    • /
    • pp.675-682
    • /
    • 2000
  • 25 seismic shot gathers were obtained to study the two dimensional subsurface shear wave velocities in a landfilled area near the Keum river estuary. Borehole(BH#1 and BH#2) tests at two sites were made in the same area. Standard Penetration Tests were also performed at the same time. The 2-D shear wave velocity structure resulted from the inversion of the seismic data shows that the subsurface of the studied area consists of the upper 1${\sim}$3 meter thick layer(200 m/sec${\sim}$700 m/sec), the middle 5${\sim}$8 m thick low velocity layer(100 m/sec${\sim}$400 m/sec), and the lower layer of 1000m/sec or higher shear wave velocities. The thickness of the low velocity layer decreases from the BH #1 site to the BH #2 site. The depth to the basement also decreases toward the BH #2 site. The examination of the S wave velocity structure, the description of the geologic contents, and the Standard Penetration Test values indicate that the middle layer of low shear wave velocity may be related to the clay content of the layer. On the other hand, the Standard Penetration test values increase with depth, showing no significant relationship with the geologic contents of the subsurface. This study shows that the inversion of surface waves can be effective in the study of the shear wave velocity, especially in the area where low velocity layers can be found. The method of inversion of surface waves also can be used as a viable technique to overcome the limit of the seismic refraction method.

  • PDF

Computation of a Turbulent Natural Convection in a Rectangular Cavity with the Low-Reynolds-Number Differential Stress and Flux Model

  • Choi, Seok-Ki;Kim, Eui-Kwang;Wi, Myung-Hwan;Kim, Seong-O
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1782-1798
    • /
    • 2004
  • A numerical study of a natural convection in a rectangular cavity with the low-Reynolds-number differential stress and flux model is presented. The primary emphasis of the study is placed on the investigation of the accuracy and numerical stability of the low-Reynolds-number differential stress and flux model for a natural convection problem. The turbulence model considered in the study is that developed by Peeters and Henkes (1992) and further refined by Dol and Hanjalic (2001), and this model is applied to the prediction of a natural convection in a rectangular cavity together with the two-layer model, the shear stress transport model and the time-scale bound ν$^2$- f model, all with an algebraic heat flux model. The computed results are compared with the experimental data commonly used for the validation of the turbulence models. It is shown that the low-Reynolds-number differential stress and flux model predicts well the mean velocity and temperature, the vertical velocity fluctuation, the Reynolds shear stress, the horizontal turbulent heat flux, the local Nusselt number and the wall shear stress, but slightly under-predicts the vertical turbulent heat flux. The performance of the ν$^2$- f model is comparable to that of the low-Reynolds-number differential stress and flux model except for the over-prediction of the horizontal turbulent heat flux. The two-layer model predicts poorly the mean vertical velocity component and under-predicts the wall shear stress and the local Nusselt number. The shear stress transport model predicts well the mean velocity, but the general performance of the shear stress transport model is nearly the same as that of the two-layer model, under-predicting the local Nusselt number and the turbulent quantities.

Low Velocity Impact Behavior of Metallic Sandwich Plate with a Truss Core (트러스형 내부구조를 가지는 샌드위치 판재의 저속 충격 특성 연구)

  • Jung, Chang-Gyun;Seong, Dae-Yong;Yang, Dong-Yol;Kim, Jin-Suck;Ahn, Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.10
    • /
    • pp.80-87
    • /
    • 2006
  • Metallic sandwich plate with a truss core has metallic inner structures which have low relative density between a pair of metal skin sheets or face sheets. In this work, low impact tests have been carried out to examine the behavior of sandwich plates with a pyramidal truss core. For the low velocity impact, the impact apparatus of drop weight type has been fabricated. From the results of the experiments, maximum energy absorption is found to happen when the upper sheet fails. The sandwich plate loses its absorption ability as soon as the inner structures have been crashed completely and optimal core thickness has existed to maximize energy absorption. Comparing the metallic sandwich plate with the monocoque plate, the absorbed energy has been improved up to 160 % and the deflection decreased by up to 76%. As a result, the metallic sandwich plate with a truss core is shown to have good material for impact resistance and energy absorption.

The Impact fracture Behaviors of Low Density LD Carbon/Carbon Composites by Drop Weight Impact Test (낙하 충격 시험에 의한 저밀도 2-D탄소/탄소 복합재의 충격파괴거동)

  • 주혁종;손종석
    • Polymer(Korea)
    • /
    • v.26 no.2
    • /
    • pp.270-278
    • /
    • 2002
  • In this study, the fracture behavior by low velocity impact damage and the tendencies of impact energy absorption were investigated. Low velocity impact tests were performed using a mini tower drop weight impact tester, and graphite powder, carbon black and milled carton fiber were chosen as additives. Addition of graphite powder increased the maximum load and maintained the stress long until the total penetration happened. At the content of 9 vol%, they showed the maximum of 42% improvement in impact strength compared composites containing no additives. At the test with low impact energy of 0.4 J, impact energy was consumed by delamination in the composite containing no additives, however, as graphite contents increased, the tendency of failure changed to the penetration of the specimen.

An Efficient Attitude Reference System Design Using Velocity Differential Vectors under Weak Acceleration Dynamics

  • Lee, Byungjin;Yun, Sukchang;Lee, Hyung-Keun;Lee, Young Jae;Sung, Sangkyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.222-231
    • /
    • 2016
  • This paper proposes a new method achieving computationally efficient attitude reference system for low cost strapdown sensors and microprocessor platform. The main idea in this method is to define and compare velocity differential vectors, geometrically computed from INS and GPS data with different update rate, for generating attitude error measurements which is further used for filter construction. A quaternion based Kalman filter configuration is applied for the attitude estimation with the adapted measurement model of differential vector comparison. Linearized model for Extended Kalman Filter and low pass filtered characteristics of measurement greatly extend the affordability of the proposed algorithm to the field of simple low cost embedded systems. For performance verification, experiment are done employing a practical low cost MEMS IMU and GPS receiver specification. Performance comparison with a high grade navigation system demonstrated good estimation result.

Performance Prediction of Combustion Chamber for 75 ton LRE through Firing Tests at Low Pressure (75톤급 액체로켓엔진 연소기 저압시험을 통한 연소성능 예측)

  • Han, Yeoung-Min;Kim, Jong-Gyu;Lee, Kwang-Jin;Lim, Byoung-Jik;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.66-70
    • /
    • 2010
  • The performance of 75 ton liquid rocket engine combustion chamber for a space launch vehicle was predicted through firing tests at low pressure. In low pressure tests of 75 ton LRE combustor chamber, the combustion characteristic velocity of 1750 m/sec and the specific impulse of 240 sec were obtained which are higher than the low pressure performance of 30ton combustion chamber. The combustion characteristic velocity of 1770 m/sec and the specific impulse of 278 sec at design point for 75 ton LRE combustion chamber were predicted by using the low/high pressure performance correlation of 30ton LRE combustion chamber.

  • PDF