• Title/Summary/Keyword: low velocity

Search Result 2,854, Processing Time 0.028 seconds

A Study on Ultrasonic Evaluation of Material Defects in Carbon/carbon Composites

  • Im, Kwang-Hee;David K. Hsu;Cha, Cheon-Seok;Sim, Jae-Ki;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1652-1663
    • /
    • 2002
  • It is desirable to perform nondestructive evaluation to assess material properties and part homogeneity because manufacturing of carbon/carbon (C/C) composites requires complicated and costly processes. In this work several ultrasonic techniques were applied to carbon/carbon composites for the evaluation of spatial variations in material properties that are attributable to the manufacturing process. In a large carbon/carbon composite manufactured by chemical vapor infiltration (CVI) method, the spatial variation of ultrasonic velocity was measured and found to be consistent with the densification behavior in CVI process in order to increase the density of C/C composites. Ultrasonic velocity and attenuation depend on a density variation of materials. Low frequency through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity These results were compared with that obtained by dry-coupling ultrasonics. Pulse-echo C-scans was used to image near-surface material property anomalies such as the placement of spacers between disks during CVI. Also, optical micrograph had been examined on the surface of C/C composites using a destructive way.

Studies on Morpho-pedo Milieu of Forest Wetland on Mt. Jeombong - Focused on Diatom Analysis and Grain Size Analysis (점봉산 산림습지의 지형·토양 환경분석 - 입도분석과 규조분석을 중심으로)

  • Kim, Nam-Shin;Cha, Jin-Yeol;Park, Yong-Su;Cho, Yong-Chan;Kwon, Hye-Jin;Oh, Seung-Hwan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.1
    • /
    • pp.13-24
    • /
    • 2017
  • This study is to provide basic data on ecology and morpho-pedo milieu by analyzing diatom and grain size of Mt. Jeombong forest wetland. Sample was collected from 6 points and named sample 943, 932, 885, 881A, 881b, 849. Sample 934 could not identify diatom, and the soil layer was colluvium deposited by mass-movement process. Layer of sample 932 was developed in the lower velocity environment, and presence frequence of complete diatom was very low. Hydrological situation of sample 855 was analysed in oligosaprobien environments. Sample 881A was meso-saprobic environments, velocity was slow area that inhabit musci bryopsida and sphaerocarpus. Sample 881B was acidic wetland in oligosaprobien environments. Sample 849 was analysed in oligosaprobien environments. The results of soil and diatom analysis are well reflect on wet environments of mountain wetlands and also it will expected to be in the help of environmental changes study of mountain wetlands.

EVALUATION OF NOx REDUCTION CATALYST BY MODEL GAS FOR LEAN-BURN NATURAL GAS ENGINE

  • LEE C. H.;CHO B. C.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.591-598
    • /
    • 2005
  • A three-way catalyst system of a natural gas vehicle (NGV) has characteristics of higher fuel consumption and higher thermal load than a lean-bum catalyst system. To meet stringent emission standards in the future, NGV with the lean-bum engine may need a catalyst system to reduce the amounts of HC, CO and NOx emission, although natural gas system has low emission characteristics. We conducted experiments to evaluate the conversion efficiency of the NOx reduction catalyst for the lean-burn natural gas engine. The NOx reduction catalysts were prepared with the ${\gamma}-Al_{2}O_3$ washcoat including Ba based on Pt, Pd and Rh precious metal. In the experiments, effective parameters were space velocity, spike duration of the rich condition, and the temperature of flowing model gas. From the results of the experiments, we found that the temperature for maximum NOx reduction was around $450^{\circ}C$, and the space velocity for optimum NOx reduction was around $30,000\;h^{-1}$ And we developed an evaluation model of the NOx reduction catalyst to evaluate the conversion performance of each other catalysts.

The Evaluation of Performance Limiting Factors for the Optimization of Drinking Water Treatment (정수장 최적화를 위한 성능제한인자 평가에 관한 연구)

  • Kim, Jeong Hyun;Bae, Chul Ho;Park, No Suk;Moon, Yong Taik;Lee, Sun Ju;Kown, Soon Buhm;Ahn, Hyo Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.78-91
    • /
    • 2005
  • Performance limiting factors (PLFs) derived from 161 drinking water treatment plants (DWTPs), assessed by International Technical Diagnosis & Assistance Center, were analyzed and evaluated in more detail in this study. In order to conduct study, 161 DWTPs were divided into five categories depending on their capacity, and into twelve groups according to processes and facilities. From the results of analysis, PLFs and their distribution ratio derived from each category were significantly different. Filtration was the most important performance limiting process in all DWTPs of five categories, and the PLFs in filtration were backwashing velocity, media configuration, bed depth, and formation of mud-ball. The PLFs in coagulation-flocculation process were found out to be coagulant dosage, mixing speed, mechanical problems, and others in the order of frequency of occurrence. Also, insufficient disinfection ability that is resulted from insufficient hydraulic detention time and improper chlorine dose and injection point, is the most significant among PLFs in a clear well. In the case of sedimentation, inappropriate baffle structure and excessive upward velocity were PLFs. In addition, the results showed that high turbid water and low alkalinity in a rainy season, ferric and manganese ions, and ammonia nitrogen have been contributed significantly on the performance of DWTPs.

The effect of physicochemical factors on the coagulation process (응집에 영향을 미치는 물리-화학 인자)

  • Kim, Sung-Goo;Ryu, Jae-Ick;Ryou, Dong-Choon;Kim, Jeong-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.1
    • /
    • pp.81-87
    • /
    • 1997
  • Coagulation is very important process in water works. The subsequent processes are directly affected by this process. Many factors such as turbidity, alkalinity, pH, hardness, total organic carbon(TOC), velocity gradient and flocculation time effect on coagulation process. Among these factors, specially TOC is being concerned target substance to be removed due to trihalomenthanes(THMs) precursor and alkalinity is being one of the major parameter for removing TOC. We have researched the consumption of coagulant with TOC alkalinity concentration of water and removal efficiency of residual TOC and turbidity with alkalinity. Furthermore we have investigated particle size distributions with velocity gradient and alkalinity. The consumption of coagulant was proportionally increased to TOC and alkalinity concentration and the removal of TOC in Nakdong river water was very difficult more than 150 mg/l in alkalinity but large morecular weight organic such as humic acid could be removed easily. Coagulation of low alkalinity water was more rapidly occured than of high alkalinity water by analyzing the particle size distributions. High alkalinity water needed higher mixing energy for a good coagulation within limited flocculation time.

  • PDF

Estimation of Average Roughness Coefficients of Bocheong Stream Basin (보청천 유역의 평균조도계수 산정)

  • Jeon, Min-Woo;Lee, Hyo-Sang;Ahn, Sang-Uk;Cho, Young-Soo;Jeon, Man-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1306-1310
    • /
    • 2009
  • The roughness coefficients were estimated by the Manning's equation for the measured stage and flow velocity of Bocheong stream basin in Kum river. The relationships between the estimated roughness coefficients and the geomorphologic factors were formulated by the linear, logarithmic, exponential and power type function, thereafter correlation equations were presented. The correlation analysis was performed between the measured stream length and the basin area of Bocheong stream basin by the linear, logarithmic, exponential and power type function, and correlation equation for the stream length was given. The roughness coefficient has strong correlationship with stream slope, but low correlation coefficients with stream length and basin area. For the correlationship with the roughness coefficients and the stream slope, the logarithmic type function has the smallest correlation coefficient, on the other hand, the exponential type function has the largest correlation coefficient. For the relationship between the stream length and the basin area, the correlation coefficient of the logarithmic type function shows the smallest value, linear type function shows the largest value.

  • PDF

Effects of Blasting Vibrations on Strength and Physical Properties of Curing Concrete (발파진동의 크기가 양생콘크리트의 강도와 물성에 미치는 영향)

  • 박근순
    • Explosives and Blasting
    • /
    • v.16 no.4
    • /
    • pp.18-28
    • /
    • 1998
  • Effects of blasting vibrations on curing concrete have not been well studied. As a result, unreasonable and strong blasting vibration constraints have been placed on blasting when it occur in the vicinity of curing concrete. To study the effects of blasting on curing concrete blocks of $33.3{\times}27.7{\times}16.2cm$ were molded and placed on the quarry. Several sets of concrete blocks were subjected separately to peak vibrations of 0.25, 0.5, 1.0, 5.0 and 10cm/sec. The impulses of blasting vibrations were applied with thirty-minute intervals. Along with unvibrated concrete blocks, the vibrated concrete samples cored with 60.3mm in diameter were measured for elastic moduli, sonic velocity and uniaxial compressive strength. Test results can be summarized as follows; 1. The blasting vibrations between 6 and 8 hours after pour generally lowered on the uniaxial compressive strength of the concrete. 2. A low blasting vibration of 0.25cm/sec did not affect the uniaxial compressive strength. As the magnitude of the blasting vibration increases, compressive strength of concrete is decreased. 3. Physical properties of the P-wave velocity, Young’s modulus, and Poisson's ratio showed a weakly decreasing trend in the concrete blocks vibrated between 6 and 8 hours after pour.

  • PDF

COHERENT STRUCTURES IN DEVELOPING FLOW OVER A WAVY WALL (파형벽면이 있는 채널 유동의 응집 구조 연구)

  • Chang, Kyoung-Sik
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.93-99
    • /
    • 2012
  • The present study focuses on the case of developing flow with in a channel containing a long array of sinusoidal waves (2a/${\lambda}$=0.1, ${\lambda}$=h, ${\lambda}$ is the wavelength, 2a is the wave height, h is the mean channel depth) at the bottom wall. The Reynolds number defined with channel height, h and the mean velocity, U, is Re=6,700. The channel is sufficiently long such that transition is completed and the flow is fully developed over the downstream half of the channel. For the case of an incoming steady flow with no resolved turbulence, the instantaneous flow fields in the transition region are characterized by the formation of arrays of highly-organized large-scale hairpin vortices whose dimensions scale with that of the roughness elements. The paper explains the mechanism for the formation of these arrays of hairpin vortices and shows these eddies play the primary role in the formation of the large-scale streaks of high and low velocity over the wavy wall region. The presence of resolved turbulence in the incoming flow, reduces the streamwise distance needed for the streaks to develop over the wavy region, but does not affect qualitatively the transition process. In the fully-developed region, isolated and trains of large-scale hairpins play an important role in the dynamics of the streaks over the wavy wall.

Effects of the free Stream Turbulence Intensity on the Flow Over an Axisymmetric Backward-Facing Step (축대칭 하향단흐름에서 자유흐름 난류강도의 영향)

  • 양종필;김경천;부정숙
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2328-2341
    • /
    • 1995
  • An experimental study on the flow over the axisymmetric backward-facing step was carried out. The purposes of the present study are to investigate the effect of the free stream turbulence intensity on the reattachment length and to understand the turbulence structure of the recirculating flows. Local mean and fluctuating velocity components were measured in the separated and reattaching axisymmetric turbulent boundary layer over the wall of convex cylinder placed in a water tunnel by using 2-color 4-beam fiber optics laser Doppler velocimetry. As the free stream turbulence intensity increased, the reattachment length became shorter due to the enhanced mixing in the separated shear layer. It was also observed that the reverse flow velocity and turbulent kinetic energy increase with increasing free stream turbulence intensity. Spectral data and flow visualization showed that low-frequency motions occur in the separated flow behind a backward-facing step. These motions have a significant effect on the time-averaged turbulence data.

Heat Transfer Analysis of a Thermal Storage System using the Ice Capsule of Bar and Ring Module (봉과 링 조합형 아이스캡슐을 적용한 축열시스템의 열전달 해석)

  • Kim, Myoung-Su;Choi, Hyoung-Gwon;Byon, Sung-Kwang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.268-275
    • /
    • 2008
  • The shape and array of ice capsules are very important factors in ice thermal storage system because the heat transfer rate of the system strongly depends upon them. In this paper, a new type of ice capsule composed of bar and ring module is proposed to increase the efficiency of the ice thermal storage system. To investigate the heat transfer rate of the proposed ice capsule, numerical analysis of the incompressible Navier-Stokes equations is performed to compare the proposed bar and ring system with the conventional ice capsules. It is shown that the ice capsule composed of bar and ring has a higher heat transfer rate and a low outlet temperature than the conventional ice capsules for various packing ratios and entrance velocities. Furthermore, it is found that the optimal entrance velocity exists between 0.005 m/s and 0.007 m/s from the present numerical analysis.