• Title/Summary/Keyword: low temperature sintering.

Search Result 762, Processing Time 0.316 seconds

Fabrication of Temperature Stable LTCC with Low Loss (온도 안정성 저손실 LTCC제조)

  • 김용철;이경호
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.4
    • /
    • pp.341-345
    • /
    • 2003
  • ZnWO$_4$shows excellent frequency selectivity due to its high quality factor(Q${\times}$f) at microwave frequencies. However, in order to use ZnWO$_4$as multilayered wireless communication components, its other properties such as sintering temperature(105$0^{\circ}C$). $$\tau$_f$(-70ppm/$^{\circ}C$) and $$\varepsilon$_r$(15.5) should be modified. In present study, TiO$_2$and LiF were used to improve the microwave dielectric and sintering properties of ZnWO$_4$. TiO$_2$ additions to ZnWO$_4$changed $\tau$$_{f}$ from negative to positive value, and also increased $$\varepsilon$_r$, due to its high $$\tau$_f$(+400ppm$^{\circ}C$) and $$\varepsilon$_r$(100). At 20 mol% TiO$_2$ addition, $$\tau$_f$was controlled to near zero ppm/$^{\circ}C$ with $$\varepsilon$_r$=19.4 and Q${\times}$ f=50000GHz. However, the sintering temperature was 110$0^{\circ}C$. LiF addition to the ZnWO$_4$+TiO$_2$ mixture greatly reduced the sintering temperature from 110$0^{\circ}C$ to 85$0^{\circ}C$ due to liquid phase formation. Also LiF addition decreased the $$\tau$_f$value due to its high negative $$\tau$_f$ value. Therefore, by controlling the TiO$_2$and LiF amount. temperature stable LTCC(Low Temperature Cofired Ceramics) material with low loss in the ZnWO$_4$-TiO$_2$-LiF system could be fabricated.d.d.

  • PDF

Effect of Applied Pressure on Microstructure and Mechanical Properties for Spark Plasma Sintered Titanium from CP-Ti Powders (CP-Ti 분말로부터 스파크 플라즈마 소결한 타이타늄의 미세구조와 기계적 성질에 미치는 가압력의 영향)

  • Cho, Kyeong-Sik;Song, In-Beom;Kim, Jae;Oh, Myung-Hoon;Hong, Jae-Keun;Park, Nho-Kwang
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.678-685
    • /
    • 2011
  • The aim of this study was to determine the effect of applied pressure and sintering temperature on the microstructure and mechanical properties for spark plasma sintering (SPS) from commercial pure titanium (CP-Ti) powders. Spark plasma sintering is a relatively new sintering technique in powder metallurgy which is capable of sintering metal and ceramic powers quickly to full density at a fairly low temperature due to its unique features. SPS of -200 mesh or -400 mesh CP-Ti powders was carried out in an $Ar+H_2$ mixed gas flowing atmosphere between $650^{\circ}C$ and $750^{\circ}C$ under 10 to 80 MPa pressure. When SPS was carried out at relatively low temperatures ($650^{\circ}C$ to $750^{\circ}C$), the high (>60 MPa) pressure had a marked effect on densification and grain growth suppression. The full density of titanium was achieved at temperatures and pressures above $700^{\circ}C$ and 60 MPa by spark plasma sintering. The crystalline phase and microstructure of titanium sintered up to $700^{\circ}C$ consisted of ${\alpha}$-Ti and equiaxed grains. Vickers hardness ranging from 293 to 362 Hv and strength ranging from 304 to 410 MPa were achieved for spark plasma sintered titanium.

A Study on Properties on High Temperature Sintering Gravure Off-set Ag Paste (고온 소결형 그라비어 오프셋용 Ag 페이스트의 물성 연구)

  • Park, Chang-Won;HwangBo, Hyuck;Cho, Jung-Woo;Nam, Su-Yong
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.29 no.2
    • /
    • pp.71-82
    • /
    • 2011
  • Electronic display markets has been developed. The cathode ray tube of brown form recently celebrated their 100th by first display. Also LCD of flat form recently celebrated their 25th by second display and it has advantage of small volume, lower consumption power. But FPD has problem that is property of brittle and noncarrying by glass substrate. Therefore the arrival of portable electronics devices has put an increasing premium on durable, lightweight and inexpensive display components. It is flexible display by third display. Also electronics field such as printed wiring board, RFID, membrane switch prefer flexible display. The conductive pattern can be used mostly in field of electronic displays and electronics. This manufacture of conductive pattern in present used is screen printing. The the conductive pattern. It has advantages of flexibility, high conductivity, drying in low temperature, good conductivity. screen printing has problem that is low productivity and use not flexible substrate because of high fire temperature. This study was developed novel method to form the conductive pattern. It has advantages of flexibility, high conductivity, drying in low temperature, good conductivity.

Low Temperature Sintering of BNKT Lead-Free Piezoelectric Ceramics Using CuO-Coated Na0.5Bi4.5Ti4O15 Templates (산화구리가 피복된 Na0.5Bi4.5Ti4O15 틀입자를 이용한 BNKT 무연 압전 세라믹스의 저온소성 연구)

  • Jeong, Gwang-Hwi;Lee, Sang-Seop;Ahn, Chang Won;Han, Hyoung Su;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.337-343
    • /
    • 2020
  • This study investigated the low temperature sintering with various templates of Bi-based lead-free piezoelectric ceramics. The effects of using CuO-coated Na0.5Bi4.5Ti4O15 templates on the sintering behavior as well as the dielectric, ferroelectric, and piezoelectric properties of Bi1/2(Na0.78K0.22)1/2TiO3 (BNKT) ceramics have been examined. In comparison with the specimens sintered with the Na0.5Bi4.5Ti4O15 templates without CuO coating, those sintered with the CuO-coated Na0.5Bi4.5Ti4O15 templates showed larger template sizes as well as a larger electric field induced strain (Smax/Emax) of 422 pm/V after sintering at temperatures as low as 975℃. These results are promising for low-cost multilayer ceramic actuator applications.

Low Temperature Sintering and Electrical Properties of Bi-based ZnO Chip Varistor (Bi계 ZnO 칩 바리스터의 저온소결과 전기적 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.876-881
    • /
    • 2011
  • The sintering, defect and grain boundary characteristics of Bi-based ZnO chip varistor (1,608 mm size) have been investigated to know the possibility of lowering a manufacturing price by using 100 % Ag inner-electrode. The samples were prepared by general multilayer chip varistor process and characterized by shrinkage, SEM, current-voltage (I-V), admittance spectroscopy (AS), impedance and modulus spectroscopy (IS & MS) measurement. There are no problems to make a chip varistor with 100% Ag inner-electrode in the sintering temperature range of 850~900$^{\circ}C$ for 1 h in air. A good varistor characteristics ($V_n$= 9.3~15.4 V, a= 23~24, $I_L$= 1.0~1.6 ${\mu}A$) were revealed but formed $Zn_i^{{\cdot}{\cdot}}$(0.209 eV) as dominant defect, and increased the distributional inhomogeneity and the temperature instability in grain boundary barriers.

Effects of Heat-treatment Condition on the Characteristics of Sintering and Electrical Behaviors of Two NASICON Compounds (열처리조건이 두 NASICON 조성의 소결 및 전기적특성에 미치는 영향)

  • 강희복;조남희;김윤호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.685-692
    • /
    • 1997
  • Effects of sintering temperature and time on the phase formation, the characteristics of sintering and electrical behaviors of NASICON compounds with Na3Zr2Si2PO12 and Na3.2Zr1.3Si2.2P0.8O10.5 compositions synthesized by solid state reaction were investigated. Maximum relative densities of 96% and 91% were obtained for Na3Zr2Si2PO12 and Na3.2Zr1.3Si2.2P0.8O10.5 compounds, respectively. Complex impedance analysis in a frequency range below 4 MHz was performed to measure the ionic conductivity and migration barrier height of the compounds at RT-30$0^{\circ}C$. The maximum ionic conductivity and the minimum migration barrier height were 0.45 ohm-1cm-1 and 0.07 eV, respectively. The migration barrier height of the high temperature form (space group : R3c) is about 30-40% of that of the low temperature form (space group : C2/c) in two NASICON compounds. Ionic conductivity increases with increasing sinterability, and the presence of glass phase in Na3.2Zr1.3Si2.2P0.8O10.5 compounds lowers significantly ionic conductivity at temperatures above 14$0^{\circ}C$.

  • PDF

Computer aided simulation of spark plasma sintering process (Part 2 : analysis) (스파크 플라스마 소결공정의 전산모사(2부 : 해석))

  • Keum Y.T.;Jung S.C.;Jean J.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.1
    • /
    • pp.43-48
    • /
    • 2006
  • In this Part 2, the grain growth processes of $Al_2O_3$ ceramics is numerically simulated using Monte Carlo method (MCM) and finite element method (FEM) and the pore sizes are analyzed. As the green ceramics whose thermal conductivities in high temperatures are generally low are sintered by the plasma heat and are rapidly cooled, the grain growth of the sintered body in the center is different from that in the outer. Also, even in the same sintering temperature, the pore size differs according to the pressing pressure. In order to prove the difference, the temperature distribution of the sintered body was analyzed using the finite element method and then the grain growth process associated with pressing pressures and relative densities was simulated using Monte Carlo method.

Calculating the Threshold Energy of the Pulsed Laser Sintering of Silver and Copper Nanoparticles

  • Lee, Changmin;Hahn, Jae W.
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.601-606
    • /
    • 2016
  • In this study, in order to analyze the low-temperature sintering process of silver and copper nanoparticles, we calculate their melting temperatures and surface melting temperatures with respect to particle size. For this calculation, we introduce the concept of mean-squared displacement of the atom proposed by Shi (1994). Using a parameter defined by the vibrational component of melting entropy, we readily obtained the surface and bulk melting temperatures of copper and silver nanoparticles. We also calculated the absorption cross-section of nanoparticles for variation in the wavelength of light. By using the calculated absorption cross-section of the nanoparticles at the melting temperature, we obtained the laser threshold energy for the sintering process with respect to particle size and wavelength of laser. We found that the absorption cross-section of silver nanoparticles has a resonant peak at a wavelength of close to 350 nm, yielding the lowest threshold energy. We calculated the intensity distribution around the nanoparticles using the finite-difference time-domain method and confirmed the resonant excitation of silver nanoparticles near the wavelength of the resonant peak.

Alternative Sintering Technology of Printed Nanoparticles for Roll-to-Roll Process (롤투롤 인쇄공정 적용을 위한 차세대 나노입자 소결 기술)

  • Lee, Eun Kyung;Eun, Kyoungtae;Ahn, Young Seok;Kim, Yong Taek;Chon, Min-Woo;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.15-24
    • /
    • 2014
  • Recently, a variety of printing technologies, including ink jet, gravure, and roll-to-roll (R2R) printing, has generated intensive interest in the application of flexible and wearable electronic devices. However, the actual use of printing technique is much limited because the sintering process of the printed nanoparticle inks remains as a huge practical drawback. In the fabrication of the conductive metal film, a post-sintering process is required to achieve high conductivity of the printed film. The conventional thermal sintering takes considerable sintering times, and requires high temperatures. For application to flexible devices, the sintering temperature should be as low as possible to minimize the damage of polymer substrate. Several alternative sintering methods were suggested, such as laser, halogen lamp, infrared, plasma, ohmic, microwave, and etc. Eventually, the new sintering technique should be applicable to large area, R2R, and polymer substrate as well as low cost. This article reviews progress in recent technologies for several sintering methods. The advantages and disadvantages of each technology will be reviewed. Several issues for the application in R2R process are discussed.

Sintering Characteristics of Nickel Silicide Alloy (니켈 실리사이드 화합물의 소결특성)

  • Byun, Chang-Sop;Lee, Sang-Hou
    • Korean Journal of Materials Research
    • /
    • v.16 no.6
    • /
    • pp.341-345
    • /
    • 2006
  • [ $Ni_2Si$ ] mixed powders were mechanically alloyed by a ball mill and then processed by hot isostatic pressing (HIP) and spark plasma sintering (SPS). In the powder that was mechanically alloyed for 15minutes(MA 15 min), only Ni and Si were observed but in the powder that was mechanically alloyed for 30minutes(MA 30 min), $Ni_2Si$, Ni and Si were mixed together. Some of the MA 15 min powder and MA 30 min powder were processed by HIP under pressure of 150MPa at the temperature of $1000^{\circ}C$ for two hours and some of them were processed by SPS under pressure of 60 MPa at the temperature of $1000^{\circ}C$ for 60 seconds. Both methods completely compounded the powders to $Ni_2Si$. The maximum density of sintered lumps by HIP method was 99.5% and the maximum density of the sintered lump by SPS method was 99.3%. with the hardness of HRc 66 with the hardness of HRc 63. Therefore, the SPS method that can sinter in short time at low cost is considered to be more economical that the HIP method that requires complicated sintering conditions and high cost and the sintering can produce target materials in desired sizes and shapes to be used for thin film.