• 제목/요약/키워드: low temperature scanning electron microscopy

검색결과 275건 처리시간 0.034초

Synthesis of rhombohedral-structured zinc germanate thin films and characteristics of divalent manganese-activated electroluminescence

  • Yoon, Kyung-Ho;Kim, Joo-Han
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.453-453
    • /
    • 2010
  • In this study, zinc germanate ($Zn_2GeO_4$) thin films has been synthesized by using radio frequency magnetron sputtering and the divalent manganese-activated luminescence was characterized. X-ray diffraction patterns of the as-deposited $Zn_2GeO_4$:Mn films showed only a broad feature, indicative of an amorphous structure. Scanning electron microscopy images revealed that the as-deposited $Zn_2GeO_4$:Mn has a smooth surface morphology. The $Zn_2GeO_4$:Mn films were found to be crystallized by annealing in air ambient at temperatures as low as $700^{\circ}C$. The annealed $Zn_2GeO_4$:Mn possessed a rhombohedral polycrystalline structure. The broad-band photoluminescent emission spectrum from 470 to 650nm was obtained at room temperature from the $Zn_2GeO_4$:Mn films. The emission peak was centered at around 535nm in the green range, which originates from the intrashell transition of manganese $3d^5$ electrons from $^4T_1$ excited-state level to the $^6A_1$ ground state. The PL emission spectrum had an asymmetric line shape, which results from the $^3d_5$ electron transitions of divalent manganese ions located at different sites of the zinc germanate host crystal lattice. Electroluminescent devices were fabricated using $Zn_2GeO_4$:Mn as an emission layer. The fabricated devices showed a green EL emission similar to the PL emission. The CIE chromaticity color coordinates of the EL emission were determined to be x=0.308 and y=0.657.

  • PDF

Effect of Sn Doping on the Thermoelectric Properties of P-Type Mg3Sb2 Synthesized by Controlled Melting, Pulverizing Followed by Vacuum Hot Pressing

  • Rahman, Md. Mahmudur;Kim, Il-Ho;Ur, Soon-Chul
    • 한국재료학회지
    • /
    • 제32권3호
    • /
    • pp.132-138
    • /
    • 2022
  • Zintl phase Mg3Sb2 is a promising thermoelectric material in medium to high temperature range due to its low band gap energy and characteristic electron-crystal phonon-glass behavior. P-type Mg3Sb2 has conventionally exhibited lower thermoelectric properties compared to its n-type counterparts, which have poor electrical conductivity. To address these problems, a small amount of Sn doping was considered in this alloy system. P-type Mg3Sb2 was synthesized by controlled melting, pulverizing, and subsequent vacuum hot pressing (VHP) method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate phases and microstructure development during the process. Single phase Mg3Sb2 was successfully formed when 16 at.% of Mg was excessively added to the system. Nominal compositions of Mg3.8Sb2-xSnx (0 ≤ x ≤ 0.008) were considered in this study. Thermoelectric properties were evaluated in terms of Seebeck coefficient, electrical conductivity, and thermal conductivity. A peak ZT value ≈ 0.32 was found for the specimen Mg3.8Sb1.994Sn0.006 at 873 K, showing an improved ZT value compared to intrinsic one. Transport properties were also evaluated and discussed.

백금 담지 다공성 산화인듐 나노입자 구조를 이용한 수소센서 (Hydrogen sensor using Pt-loaded porous In2O3 nanoparticle structures)

  • 윤성도;명윤;나찬웅
    • 한국표면공학회지
    • /
    • 제56권6호
    • /
    • pp.420-426
    • /
    • 2023
  • We prepared a highly sensitive hydrogen (H2) sensor based on Indium oxides (In2O3) porous nanoparticles (NPs) loaded with Platinum (Pt) nanoparticle in the range of 1.6~5.7 at.%. In2O3 NPs were fabricated by microwave irradiation method, and decorations of Pt nanoparticles were performed by electroless plating on In2O3 NPs. Crystal structures, morphologies, and chemical information on Pt-loaded In2O3 NPs were characterized by grazing-incident X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, respectively. The effect of the Pt nanoparticles on the H2-sensing performance of In2O3 NPs was investigated over a low concentration range of 5 ppm of H2 at 150-300 ℃ working temperatures. The results showed that the H2 response greatly increased with decreasing sensing temperature. The H2 response of Pt loaded porous In2O3 NPs is higher than that of pristine In2O3 NPs. H2 gas selectivity and high sensitivity was explained by the extension of the electron depletion layer and catalytic effect. Pt loaded porous In2O3 NPs sensor can be a robust manner for achieving enhanced gas selectivity and sensitivity for the detection of H2.

저전압용 $SrTiO_3$ : Al, Pr 적색 형광체 합성 및 발광특성 (Preparation and Low-Voltage Luminescent Properties of $SrTiO_3$:Al, Pr Red Phosphor)

  • 박정규;류호진;박희동;최승철
    • 한국재료학회지
    • /
    • 제8권7호
    • /
    • pp.601-606
    • /
    • 1998
  • 고상반응법으로 $SrTiO_3$ : AI, Pr 적색 형광체를 합성하였다. PL 스펙트럼과 CL 스펙트럼의 발광 강도를 소결 온도와 소결 시간등의 형광체의 제조 변수에 대하여 최적화 하였다. 열처리한 분말은 XRD 분석 결과 페로브스카이트구조를 보였고, PSD 분석결과 평균입자크기는 약 3~5$\mu\textrm{m}$이었다. 또한 분말의 주사 전자 현미경 사진에 의한면 구형을 갖는잘 결정화된 입자들이 관찰되었다. 특히, 본 연구에서 합성된 분말의 특성은 상용화된 $Y_2O_3: Eu 형광체 보다 저전압에서의 CL 특성이 더 우수하였으며, 이 형광체는 저전압에서 구동하는 FED에 응용할 가능성이 높을 것으로 생각된다.

  • PDF

무전해 도금을 이용한 Si 태양전지 Ni-W-P/Cu 전극 형성 (Formation of Ni-W-P/Cu Electrodes for Silicon Solar Cells by Electroless Deposition)

  • 김은주;김광호;이덕행;정운석;임재홍
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.54-61
    • /
    • 2016
  • Screen printing of commercially available Ag paste is the most widely used method for the front side metallization of Si solar cells. However, the metallization using Ag paste is expensive and needs high temperature annealing for reliable contact. Among many metallization schemes, Ni/Cu/Sn plating is one of the most promising methods due to low contact resistance and mass production, resulting in high efficiency and low production cost. Ni layer serves as a barrier which would prevent copper atoms from diffusion into the silicon substrate. However, Ni based schemes by electroless deposition usually have low thermal stability, and require high annealing process due to phosphorus content in the Ni based films. These problems can be resolved by adding W element in Ni-based film. In this study, Ni-W-P alloys were formed by electroless plating and properties of it such as sheet resistance, resistivity, specific contact resistivity, crystallinity, and morphology were investigated before and after annealing process by means of transmission line method (TLM), 4-point probe, X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM).

Structural and Electrochemical Properties of Li2Mn0.5Fe0.5SiO4/C Cathode Nanocomposite

  • Chung, Young-Min;Yu, Seung-Ho;Song, Min-Seob;Kim, Sung-Soo;Cho, Won-Il
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권12호
    • /
    • pp.4205-4209
    • /
    • 2011
  • The $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ silicate was prepared by blending of $Li_2MnSiO_4$ and $Li_2FeSiO_4$ precursors with same molar ratio. The one of the silicates of $Li_2FeSiO_4$ is known as high capacitive up to ~330 mAh/g due to 2 mole electron exchange, and the other of $Li_2FeSiO_4$ has identical structure with $Li_2MnSiO_4$ and shows stable cycle with less capacity of ~170 mAh/g. The major drawback of silicate family is low electronic conductivity (3 orders of magnitude lower than $LiFePO_4$). To overcome this disadvantage, carbon composite of the silicate compound was prepared by sucrose mixing with silicate precursors and heat-treated in reducing atmosphere. The crystal structure and physical morphology of $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ was investigated by X-ray diffraction, scanning electron microscopy, and high resolution transmission electron microscopy. The $Li_2Mn_{0.5}Fe_{0.5}SiO_4$/C nanocomposite has a maximum discharge capacity of 200 mAh/g, and 63% of its discharge capacity is retained after the tenth cycles. We have realized that more than 1 mole of electrons are exchanged in $Li_2Mn_{0.5}Fe_{0.5}SiO_4$. We have observed that $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ is unstable structure upon first delithiation with structural collapse. High temperature cell performance result shows high capacity of discharge capacity (244 mAh/g) but it had poor capacity retention (50%) due to the accelerated structural degradation and related reaction.

저온 성장 AlN 층이 삽입된 Al0.55Ga0.45N/AlN/GaN 이종접합 구조의 구조적 특성 및 이차원 전자가스의 광학적 특성 (Structural properties and optical studies of two-dimensional electron gas in Al0.55Ga0.45/GaN heterostructures with low-temperature AlN interlayer)

  • 곽호상;이규승;김희진;윤의준;조용훈
    • 한국진공학회지
    • /
    • 제17권1호
    • /
    • pp.34-39
    • /
    • 2008
  • 저온에서 성장된 AlN (LT-AlN)층이 삽입된 $Al_xGa_{1-x}N/LT$-AlN/GaN 이종접합 구조를 금속유기 화학기상 증착법 (metal-organic chemical vapor deposition)을 사용하여 사파이어 기판 위에 제작하였다. Rutherford backscattering spectroscopy 실험을 통하여 $Al_xGa_{1-x}N$층의 Al의 조성비 x가 55% 임을 확인하였고, X-선 역격자 공간 mapping을 통하여 층간 변형력을 조사하였다. LT-AlN층의 삽입 여하에 따른 $Al_{0.55}Ga_{0.45}N$ 층의 깨짐 현상을 광학현미경과 주사전자현미경을 통하여 조사하였는데, LT-AlN 층이 삽입된 시료의 경우에 깨짐 현상이 현저히 줄어든 $Al_{0.55}Ga_{0.45}N$ 층을 얻을 수 있었다. 뿐만 아니라 LT-AlN 층이 삽입된 $Al_{0.55}Ga_{0.45}N$/LT-AlN/GaN 이종접합 구조에 대하여 이차원 전자가스 (two-dimensional electron gas, 2DEG) 관련된 photoluminescence (PL) 신호를 관찰하였다. 이 시료에 대하여 온도 변화에 따른 PL 실험을 수행하여 100 K 근방까지 2DEG 관련된 PL 신호를 관찰하였다. 여기광 세기에 따른 PL 실험을 통하여 ~3.411 eV에서 나타난 2DEG PL 신호와 함께 ${\sim}3.437eV$에서도 PL 신호가 관측되었는데, 이는 AlGaN/LT-AlN/GaN 계면에 형성된 2DEG 버금띠와 Fermi 에너지 준위에서의 재결합 특성으로 각각 해석되었다.

나노 크기의 Gd2O3:Eu3+ 적색형광체가 코팅된 판상 Mica의 제조 및 형광특성 (Preparation of Nanosized Gd2O3:Eu3+ Red Phosphor Coated on Mica Flake and Its Luminescent Property)

  • 반세민;박정민;정경열;최병기;강광중;강명창;김대성
    • 한국분말재료학회지
    • /
    • 제24권6호
    • /
    • pp.457-463
    • /
    • 2017
  • Nanosized $Gd_2O_3:Eu^{3+}$ red phosphor is prepared using a template method from metal salt impregnated into a crystalline cellulose and is dispersed using a bead mill wet process. The driving force of the surface coating between $Gd_2O_3:Eu^{3+}$ and mica is induced by the Coulomb force. The red phosphor nanosol is effectively coated on mica flakes by the electrostatic interaction between positively charged $Gd_2O_3:Eu^{3+}$ and negatively charged mica above pH 6. To prepare $Gd_2O_3:Eu^{3+}$-coated mica ($Gd_2O_3:Eu/mica$), the coating conditions are optimized, including the stirring temperature, pH, calcination temperature, and coating amount (wt%) of $Gd_2O_3:Eu^{3+}$. In spite of the low luminescence of the $Gd_2O_3:Eu/mica$, the luminescent property is recovered after calcination above $600^{\circ}C$ and is enhanced by increasing the $Gd_2O_3:Eu^{3+}$ coating amount. The $Gd_2O_3:Eu/mica$ is characterized using X-ray diffraction, field emission scanning electron microscopy, zeta potential measurements, and fluorescence spectrometer analysis.

Hollow SnO2 Hemisphere Arrays for Nitric Oxide Gas Sensing

  • Hoang, Nhat Hieu;Nguyen, Minh Vuong;Kim, Dojin
    • 한국재료학회지
    • /
    • 제23권12호
    • /
    • pp.667-671
    • /
    • 2013
  • We present an easy method of preparing two-dimensional (2D) periodic hollow tin oxide ($SnO_2$) hemisphere array gas sensors using polystyrene (PS) spheres as a template. The structures were fabricated by the sputter deposition of thin tin (Sn) metal over an array of PS spheres on a planar substrate followed by calcination at an elevated temperature to oxidize Sn to $SnO_2$ while removing the PS template cores. The $SnO_2$ hemisphere array structures were examined by scanning electron microscopy and X-ray diffraction. The structures were calcined at various temperatures and their sensing properties were examined with varying operation temperatures and concentrations of nitric oxide (NO) gas. Their gas-sensing properties were investigated by measuring the electrical resistances in air and the target gases. The measurements were conducted at different NO concentrations and substrate temperatures. A minimum detection limit of 30 ppb, showing a sensitivity of S = 1.6, was observed for NO gas at an operation temperature of $150^{\circ}C$ for a sample having an Sn metal layer thickness corresponding to 30 sec sputtering time and calcined at $600^{\circ}C$ for 2 hr in air. We proved that high porosity in a hollow $SnO_2$ hemisphere structure allows easy diffusion of the target gas molecules. The results confirm that a 2D hollow $SnO_2$ hemisphere array structure of micronmeter sizes can be a good structural morphology for high sensitivity gas sensors.

과산화 티타늄 복합체를 이용한 염료감응형 태양전지용 페이스트의 제조 및 열처리 온도에 따른 특성 (The Preparation of Dye-Sensitized Solar Cell Paste Used the Peroxo Titanium Complex and Characteristics by Annealing Temperature)

  • 박현수;주소영;최준필;김우병
    • 한국분말재료학회지
    • /
    • 제22권6호
    • /
    • pp.396-402
    • /
    • 2015
  • The organic binder-free paste for dye-sensitized solar cell (DSSC) has been investigated using peroxo titanium complex. The crystal structure of $TiO_2$ nanoparticles, morphology of $TiO_2$ film and electrical properties are analyzed by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Electrochemical Impedance Spectra (EIS), and solar simulator. The synthesized $TiO_2$ nanopowders by the peroxo titanium complex at 150, 300, $400^{\circ}C$, and $450^{\circ}C$ have anatase phase and average crystal sizes are calculated to be 4.2, 13.7, 16.9, and 20.9 nm, respectively. The DSSC prepared by the peroxo titanium complex binder have higher $V_{oc}$ and lower $J_{sc}$ values than that of the organic binder. It can be attributed to improvement of sintering properties of $TCO/TiO_2$ and $TiO_2/TiO_2$ interface and to formation of agglomerate by the nanoparticles. As a result, we have investigated the organic binder-free paste and 3.178% conversion efficiency of the DSSC at $450^{\circ}C$.