• Title/Summary/Keyword: low temperature heating

Search Result 966, Processing Time 0.022 seconds

Thermal Stability of Cysteine Proteinase Inhibitor of Tilapia (Oreochromis niloticus) Egg and Serum (Tilapia(Oreochromis niloticus) 난과 혈청 Cysteine Proteinase 저해제의 저온 및 열 안정성)

  • Choi, Seong-Hee;Kwon, Hyuk-Chu;Kwon, Joon-Yeong
    • Development and Reproduction
    • /
    • v.10 no.4
    • /
    • pp.263-269
    • /
    • 2006
  • To evaluate the potentiality of industrial use of cysteine proteinase inhibitor (cystatin) of tilapia egg and serum stability of the tilapia cystatin on low temperature storage and heat treatment was studied. When the eggs were stored at $4^{\circ}C$ for 3 days the cystatin activity was not changed much, while the supernatant of egg homogenate lost its cystatin activity significantly, remaining only about 65% of initial activity. When the eggs and serum were subjected to repeated freeze at $-20^{\circ}C$ and thaw at room temperature once a day, the egg cystatin was decreased after 5 cycles of freeze and thaw. However the serum cystatin was not changed by the 5 times repetition of freeze and thaw. More than 80% of egg cystatin activity was remained when the egg was heated at $35^{\circ}C$ for 30 min, but less than 10% was remained when heated at $50^{\circ}C$. On the other hand, the serum cystatin was very resistant to heat, remaining about 74% after heating at as high as $80^{\circ}C$ for 30 min. In summary, the egg cystatin was more stable when stored as intact form of egg rather than as supernatant of homogenate when stored at refrigeration. Egg cystatin was relatively stable against repeated freeze-thaw, and serum was found to be more stable in cysteine proteinase inhibitory activity than egg. Egg cystatin was not very resistant to heat treatment, while serum cystatin was quite resistant to high temperature heat treatment. These results suggest that tilapia egg and serum, especially the serum, would be a useful source for cysteine proteinase inhibitor in surimi production.

  • PDF

A Study on the Optimal Process Parameters for Recycling of Electric Arc Furnace Dust (EAFD) by Rotary Kiln (Rotary Kiln에 의한 전기로 제강분진(EAFD)의 재활용을 위한 최적의 공정변수에 관한 연구)

  • Jae-hong Yoon;Chi-hyun Yoon;Myoung-won Lee
    • Resources Recycling
    • /
    • v.33 no.4
    • /
    • pp.47-61
    • /
    • 2024
  • As a recycling technology for recovering zinc contained in large amounts in electric arc furnace dust (EAFD), the most commercialized technology in the world is the Wealz Kiln Process. The Wealz Kiln Process is a process in which components such as Zn and Pb in EAFD are reduced/volatile (endothermic reaction) in high-temperature Kiln and then re-oxidized (exothermic reaction) in the gas phase and recovered in the form of Crude zinc oxide (60wt%Zn) in the Bag Filter installed at the rear end of Kiln. In this study, an experimental Wealz kiln was produced to investigate the optimal process variable value for practical application to the recycling process of large-scale kiln on a commercial scale. Additionally, Pellets containing EAFD, reducing agents, and limestone were continuously loaded into Kiln, and the amount of input, heating temperature, and residence time were examined to obtain the optimal crude zinc oxide recovery rate. In addition, the optimal manufacturing conditions of Pellets (drum tilt angle, moisture addition, mixing time, etc.) were also investigated. In addition, referring to the SiO2-CaO-FeO ternary system diagram, the formation behavior of a low melting point compound, a reaction product inside Kiln according to the change in the basicity of Pellet, and the reactivity (adhesion) with the castable constructed on the inner wall of Kiln were investigated. In addition, in order to quantitatively investigate the possibility of using anthracite as a substitute for Coke, a reducing agent, changes in the temperature distribution inside Kiln, where oxidation/reduction reactions occur due to an increase in the amount of anthracite, the quality of Crude zinc oxide, and the behavior of tar in anthracite were also investigated.

Evaluation of Regional Flowering Phenological Models in Niitaka Pear by Temperature Patterns (경과기온 양상에 따른 신고 배의 지역별 개화예측모델 평가)

  • Kim, Jin-Hee;Yun, Eun-jeong;Kim, Dae-jun;Kang, DaeGyoon;Seo, Bo Hun;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.268-278
    • /
    • 2020
  • Flowering time has been put forward due to the recent abnormally warm winter, which often caused damages of flower buds by late frosts persistently. In the present study, cumulative chill unit and cumulative heat unit of Niitaka pear, which are required for releasing the endogenous dormancy and for flowering after breaking dormancy, respectively, were compared between flowering time prediction models used in South K orea. Observation weather data were collected at eight locations for the recent three years from 2018-2020. The dates of full bloom were also collected to determine the confidence level of models including DVR, mDVR and CD models. It was found that mDVR model tended to have smaller values (8.4%) of the coefficient of variation (cv) of chill units than any other models. The CD model tended to have a low value of cv (17.5%) for calculation of heat unit required to reach flowering after breaking dormancy. The mDVR model had the most accurate prediction of full bloom during the study period compared with the other models. The DVR model usually had poor skills in prediction of full bloom dates. In particular, the error of the DVR model was large especially in southern coastal areas (e.g., Ulju and Sacheon) where the temperature was warm. Our results indicated that the mDVR model had relatively consistent accuracy in prediction of full bloom dates over region and years of interest. When observation data for full bloom date are compiled for an extended period, the full bloom date can be predicted with greater accuracy improving the mDVR model further.

Development of Summer Leaf Vegetable Crop Energy Model for Rooftop Greenhouse (옥상온실에서의 여름철 엽채류 작물에너지 교환 모델 개발)

  • Cho, Jeong-Hwa;Lee, In-Bok;Lee, Sang-Yeon;Kim, Jun-Gyu;Decano, Cristina;Choi, Young-Bae;Lee, Min-Hyung;Jeong, Hyo-Hyeog;Jeong, Deuk-Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.246-254
    • /
    • 2022
  • Domestic facility agriculture grows rapidly, such as modernization and large-scale. And the production scale increases significantly compared to the area, accounting for about 60% of the total agricultural production. Greenhouses require energy input to create an appropriate environment for stable mass production throughout the year, but the energy load per unit area is large because of low insulation properties. Through the rooftop greenhouse, one of the types of urban agriculture, energy that is not discarded or utilized in the building can be used in the rooftop greenhouse. And the cooling and heating load of the building can be reduced through optimal greenhouse operation. Dynamic energy analysis for various environmental conditions should be preceded for efficient operation of rooftop greenhouses, and about 40% of the solar energy introduced in the greenhouse is energy exchange for crops, so it should be considered essential. A major analysis is needed for each sensible heat and latent heat load by leaf surface temperature and evapotranspiration, dominant in energy flow. Therefore, an experiment was conducted in a rooftop greenhouse located at the Korea Institute of Machinery and Materials to analyze the energy exchange according to the growth stage of crops. A micro-meteorological and nutrient solution environment and growth survey were conducted around the crops. Finally, a regression model of leaf temperature and evapotranspiration according to the growth stage of leafy vegetables was developed, and using this, the dynamic energy model of the rooftop greenhouse considering heat transfer between crops and the surrounding air can be analyzed.

Pseudotachylyte Developed in Granitic Gneiss around the Bulil Waterfall in the Jirisan, SE Korea: Its Occurrence and Characteristics (지리산 불일폭포 일원의 화강암질편마암에 발달한 슈도타킬라이트: 산상과 특성)

  • Kang, Hee-Cheol;Kim, Chang-Min;Han, Raehee;Ryoo, Chung-Ryul;Son, Moon;Lee, Sang-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.157-169
    • /
    • 2019
  • Pseudotachylytes, produced by frictional heating during seismic slip, provide information that is critical to understanding the physics of earthquakes. We report the results of occurrence, structural characteristics, scanning electron microscopic observation and geochemical analysis of pseudotachylytes, which is presumed to have formed after the Late Cretaceous in outcrops of the Paleoproterozoic granitic gneiss on the Bulil waterfall of the Jirisan area, Yeongnam massif, Korea. Fault rocks, which are the products of brittle deformation under the same shear stress regime in the study area, are classified as pseudotachylyte and foliated cataclasite. The occurrences of pseudotachylyte identified on the basis of thickness and morphology are fault vein-type and injection vein-type pseudotachylyte. A number of fault vein-type pseudotachylytes occur as thin (as thick as 2 cm) layers generated on the fault plane, and are cutting general foliation and sheared foliation developed in granitic gneiss. Smaller injection vein-type pseudotachylytes are found along the fault vein-type pseudotachylytes, and appear in a variety of shapes based on field occurrence and vein geometry. At a first glance fault vein-type seudotachylyte looks like a mafic vein, but it has a chemical composition almost identical to the wall rock of granitic gneiss. Also, it has many subrounded clasts which consist predominantly of quartz, feldspar, biotite and secondary minerals including clay minerals, calcite and glassy materials. Embayed clasts, phenocryst with reaction rim, oxide droplets, amygdules, and flow structures are also observed. All of these evidences indicate the pseudotachylyte formed due to frictional melting of the wall rock minerals during fault slip related to strong seismic faulting events in the shallow depth of low temperature-low pressure. Further studies will be conducted to determine the age and mechanical aspect of the pseudotachylyte formation.

Analysis of Heat Transfer Characteristics on Multi-layer Insulating Curtains Coated with Silica Aerogel (실리카 에어로겔이 흡착된 다겹보온커튼의 전열 특성 분석)

  • Jin, Byung-Ok;Kim, Hyung-Kweon;Ryou, Young-Sun;Lee, Tae-Seok;Kim, Young-Hwa;Oh, Sung-Sik;Kang, Geum-Choon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.273-278
    • /
    • 2019
  • The multi-layer insulating curtains used in the experiment was produced in six combinations using non-woven fabric containing aerogel and compared and analyzed by measuring heat flux and heat perfusion rates due to weight, thickness and temperature changes. Using silica aerogel, which have recently been noted as new material insulation, this study tries to produce a new combination of multi-layer insulating curtains that can complement the shortcomings of the multi-layer insulating curtains currently in use and maintain and improve its warmth, and analyze the thermal properties. The heat flux means the amount of heat passing per unit time per unit area, and the higher the value, the more heat passing through the multi-layer insulating curtain, and it can be judged that the heat retention is low. The weight and thickness of multi-layer insulation curtains were found to be highly correlated with thermal insulation. In particular, insulation curtains combined with aerogel meltblown non-woven fabric had relatively higher thermal insulation than insulation curtains with the same number of insulation materials. However, the aerogel meltblown non-woven fabric is weak in light resistance and durability, and there is a problem that the production process and aerogel are scattering. In order to solve this problems, the combination of expanded aerogel non-woven fabric and hollow fiber non-woven fabric, which are relatively simple manufacturing processes and excellent warmth, are suitable for use in real farms.