• Title/Summary/Keyword: low temperature composition

Search Result 974, Processing Time 0.029 seconds

Dielectric and Piezoelectric Characteristics of Low Temperature Sintering 0.20Pb(Zn1/3Nb2/3)O3-0.80Pb(Zr0.48Ti0.52)O3 Ceramics with the Addition of Sintering Aid ZnO (소결조제 ZnO 첨가에 따른 저온소결 0.20Pb(Zn1/3Nb2/3)O3-0.80Pb(Zr0.48Ti0.52)O3 세라믹스의 유전 및 압전특성)

  • Yoo, Ju-Hyun;Lee, Yu-Hyong;Kim, Do-Hyung;Lee, Il-Ha;Kwon, Jun-Sik;Paik, Dong-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.126-130
    • /
    • 2008
  • In this study, in order to develop low loss multilayer piezoelectric actuator, PZN-PZT ceramics were fabricated using $Li_2CO_3,\;Bi_2O_3$, CuO and ZnO as sintering aids, their structural, piezoelectric and dielectric characteristics were investigated according to the amount of ZnO addition, At the sintering temperature of $870^{\circ}C$, the density, electromechanical coupling factor(kp), mechanical quality factor(Qm), dielectric constant(${\epsilon}_r$) and piezoelectric constant($d_{33}$) of 0.4 wt% ZnO added specimen (sintered at $870^{\circ}C$) showed the optimum value of $7.812g/cm^3$, 0.535, 916, 1399, 335 pC/N respectively. Taking into consideration above piezoelectric properties of the specimen sintered at low temperature, it was concluded that PZN-PZT ceramics using 0.4 wt% ZnO as additive showed the optimum characteristics as the composition ceramics for low loss multilayer piezoelectric actuator application.

Property of the Jurassic anthracite (Anthracite from the Seongju Area of the Chungnam Coalfield) (충남탄전(忠南炭田) 무연탄(無煙炭)의 특성(特性))

  • Park, Suk Whan;Park, Hong Soo
    • Economic and Environmental Geology
    • /
    • v.22 no.2
    • /
    • pp.129-139
    • /
    • 1989
  • The anthracite coalfields of Korea are confined to the areas where sedimentary rocks of Permian and Jurassic are preserved. The Chungnam coalfield lies in the sedimentary rocks of Jurassic which belongs to the Daedong Supergroup (the Nampo group). For the property analysis of each coal seam interbeded in Daedong Supergroup, Seongju area is chosen and twelve coalseams are taken. Many standard tests have been established for optical analysis (maceral analysis, coalification degree measurement), chemical analysis (proximate, ultimate analysis) and physical analysis (ignition temperature, ash fusion temperature, hardgrove grindability index and X-ray diffraction). The Jurassic anthracite mainly consist of vitrinite and macrinite and the range of the reflectance is $R_{max}$ 5.0-6.5 which means metaanthracite rank. By the chemical composition analysis, it shows low H/C and high O/C value compare with international average value. By the physical analysis, it has very high ignition temperature ($531-584^{\circ}C$) and ash fusion temperature ($1510-1700^{\circ}C$) and very low combustion velocity (0.2-1.9 mg/min). The very wide range of the hardgrove grindability index (46-132) means that the grindability controlled mainly by the structural conditions of coal bearing strata.

  • PDF

Bonding of Different Mate using Common Glass in Zero Shrinkage LTCC (공통의 Glass를 이용한 LTCC 이종소재의 무수축 접한)

  • Jang, Ui-Kyeong;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jong-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.12
    • /
    • pp.1106-1111
    • /
    • 2006
  • To improve warpage, delamination and the chemical reaction between 2 different co-fired materials, the bonding behavior with common glass was studied. As shown in the previous paper, the phenomenon of the infiltration is different with the composition of the glass. In particular, in the case of low temperature melting glass, infiltration is experimented in this study. GA-1 glass is infiltrated among $BaTiO_3$ particles below $800^{\circ}C$ and is made by glass/ceramic composite. Until the laminate is fired under $850^{\circ}C$, provskite phase is observed. Although in the case of GA-12 glass, the temperature of the glass infiltration is lower than it of GA-l glass, the perovskite phase already disappears at $800^{\circ}C$. As a result, GA-1 and GA-12 glasses are infiltrated among particles at low temperature, however, the chemical reactivity of the glass/ceramic and sintering temperature should be considered.

Dielectric Properties of Complex Microstructure for High Strength LTCC Material (고강도 LTCC 소재을 위한 복합구조의 유전특성)

  • Kim, Jin-Ho;Hwang, Seong-Jin;Sung, Woo-Kyung;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.309-309
    • /
    • 2007
  • The LTCCs (low-temperature co-fired ceramics) are very important for electronic industry to build smaller RF modules and to fulfill the necessity for miniaturization of devices in wireless communication industry. The dielectric materials with sintering temperature $T_{sint}$<$900^{\circ}C$ are required. In this study, we investigated with glass-ceramic composition, which was crystallized with two crystals. The microstructure, crystal phases, thermal and mechanical properties, and dielectric properties of the composites were investigated using FE-SEM, XRD, TG-DTA, 4-point bending strength test and LCR measurement. The starting temperature for densification of a sintered body was at $779{\sim}844^{\circ}C$ and the glass frits were formatted to the crystal phases, $CaAl_2Si_2O_8$(anorthite) and $CaMgSi_O_6$(diopside), at sintering temperature. The sintered bodies exhibited applicable dielectric properties, namely 6-9 for ${\varepsilon}_r$. The results suggest that the glass-ceramic composite would be potentially possible to application of low dielectric L TCC materials.

  • PDF

Permanent disposal of Cs ions in the form of dense pollucite ceramics having low thermal expansion coefficient

  • Omerasevic, Mia;Lukic, Miodrag;Savic-Bisercic, Marjetka;Savic, Andrija;Matovic, Ljiljana;Bascarevic, Zvezdana;Bucevac, Dusan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.115-122
    • /
    • 2020
  • A promising method for removal of Cs ions from water and their incorporation into stable crystal structure ready for safe and permanent disposal was described. Cs-exchanged X zeolite was hot-pressed at temperature ranging from 800 to 950 ℃ to fabricate dense pollucite ceramics. It was found that the application of external pressure reduced the pollucite formation temperature. The effect of sintering temperature on density, phase composition and mechanical properties was investigated. The highest density of 92.5 %TD and the highest compressive strength of 79 MPa were measured in pollucite hot-pressed at 950 ℃ for 3 h. Heterogeneity of samples obtained at 950 ℃ was determined using scanning electron microscopy. The pollucite hot-pressed at 950 ℃ had low linear thermal expansion coefficient of ~4.67 × 10-6 K-1 in the temperature range from 100 to 1000 ℃.

Microstructure and Piezoelectric Properties of PMN-PNN-PZT with the Sintering Temperature (소결온도에 따른 PMN-PNN-PZT 미세구조 및 압전특성)

  • Lee, Hyun-Seok;Yoo, Ju-Hyun;Yoon, Hyun-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.217-218
    • /
    • 2006
  • In this study, In order to develop the low temperature sintering multilayer piezoelectric actuator, PMN-PNN-PZT system ceramics were manufactured with the sintering temperature, and their microstructure and piezoelectric properties were investigated. At the composition ceramics sintered at $900^{\circ}C$, dielectric constant(${\varepsilone}_r$), electromechanical coupling factor($k_p$), piezoelectric constant($d_{33}$) and mechanical quality factor(Qm) showed the optimal value of 1095, 0.60, 363 and 1055, respectively, for multilayer piezoelectric actuator application.

  • PDF

Sulfur Redox Equilibrium in Mixed Alkali Silicate Glass Melts

  • Kim, Ki-Dong;Hwang, Jong-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.3
    • /
    • pp.205-210
    • /
    • 2011
  • The dependence of sulfur redox behavior and its diffusivity on temperature and composition was studied in mixed alkali silicate melts by means of square wave voltammetry (SWV) at different frequencies in a temperature range of $1000^{\circ}C$ to $1400^{\circ}C$. The voltammograms showed two reduction peaks at high frequency but only one peak at low frequency. Irrespective of $K_2O/(Na_2O+K_2O)$, each peak potential due to reduction of $S^{6+}$ to $S^{4+}$ and $S^{4+}$ to $S^0$ moved toward a negative direction with temperature decrease, and the peak current showed a strong dependence on frequency at a constant temperature. However, the compositional dependence of the peak potential showed an inconsistent behavior with an increase of $K_2O$. The mixed alkali effect was not observed in sulfur diffusion. This inconsistency of both peak potential and diffusion for compositional dependence may be derived from the strong volatilization of sulfur in melts.

Dependence of cation ratio in Oxynitride Glasses on the plasma etching rate

  • Lee, Jung-Ki;Hwang, Seong-Jin;Lee, Sung-Min;Kim, Hyung-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.44.2-44.2
    • /
    • 2009
  • Polycrystalline materials suchas yttria and alumina have been applied as a plasma resisting material for the plasma processing chamber. However, polycrystal line material may easily generate particles and the particles are sources of contamination during the plasma enhanced process. Amorphous material can be suitable to prevent particle generation due to absence of grain-boundaries. We manufactured nitrogen-containing $SiO_2-Al_2O_3-Y_2O_3$ based glasses with various contents of silicon and fixed nitrogen content. The thermal properties, mechanical properties and plasma etching rate were evaluated and compared for the different composition samples. The plasma etching behavior was estimated using XPS with depth profiling. From the result, the plasma etching rate highly depends on the silicon content and it may results from very low volatile temperature of SiF4 generated during plasma etching. The silicon concentration at the plasma etched surface was very low besides the concentration of yttrium and aluminum was relatively high than that of silicon due to high volatile temperature of fluorine compounds which consisted with aluminum and yttrium. Therefore, we conclude that the samples having low silicon content should be considered to obtain low plasma etching rate for the plasma resisting material.

  • PDF

Piezoelectric and Dielectric Properties of Low Temperature Sintering Pb(Zn1/2W1/2)O3-Pb(Mn1/3Nb2/3)O3-Pb(Zr,Ti)O3 Ceramics

  • Yoo, Ju-Hyun;Lee, Kab-Soo;Lee, Su-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.91-95
    • /
    • 2008
  • In this study, in order to develop the composition ceramics for low loss multilayer piezoelectric actuator application, $Pb(Zn_{1/2}W_{1/2})O_3-Pb(Mn_{1/3}Nb_{2/3})O_3-Pb(Zr,Ti)O_3$ (abbreviated as PZW-PMN-PZT)ceramics according to the amount of $MnO_2$ addition were fabricated using two-stage calcinations method. And also, their dielectric and piezoelectric properties were investigated. At the 0.2 wt% $MnO_2$ added PZW-PMN-PZT ceramics sintered at $930^{\circ}C$, density, electromechanical coupling factor $k_p$, dielectric constant ${\varepsilon}_r$, piezoelectric $d_{33}$ constant and mechanical quality factor $Q_m$ showed the optimum value of $7.84g/cm^3$, 0.543, 1,392, 318.7 pC/N, 1,536, respectively for low loss multilayer ceramics actuator application.

Numerical Investigation on the Urea Melting Characteristics with Coolant and Electric Heaters (냉각수 및 전기 가열 방식에 따른 요소수 해동 특성에 관한 수치해석 연구)

  • Lee, Seung Yeop;Kim, Man Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • A Urea-SCR(Selective Catalytic Reactor) system, which converts nitrogen oxides into nitrogen and water in the presence of a reducing agent, creates a major exhaust gas aftertreatment system for NOx reduction among other compounds. With regard to vehicle applications, a urea solution was chosen based on its eutectic composition of a 32.5wt% urea-water solution. An important advantage of this eutectic composition is that its melting point of $-11.7^{\circ}C$ is sufficiently low to avoid solidification in cold environments. However, the storage tanks must be heated separately in case of low ambient temperature levels to ensure a sufficient amount of liquid is available during scheduled start ups. In this study, therefore, a numerical investigation of three-dimensional unsteady heating problems analyzed to understand the melting processes and heat transfer characteristics including liquid volume fraction, temperature distributions, and temperature profiles. The investigations were performed using Fluent 6.3 commercial software that modeled coolant and electric heater models based on a urea solution. It is shown that the melting performance with the electric heater is higher than a coolant heater and is more efficient.