• Title/Summary/Keyword: low speed region

Search Result 448, Processing Time 0.027 seconds

Effects of Gas Injection on the Heating Performance of a Two-Stage Heat Pump Using a Twin Rotary Compressor with Refrigerant Charge Amount

  • Heo, Jae-Hyeok;Jeong, Min-Woo;Jeon, Jong-Ug;Kim, Yong-Chan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.3
    • /
    • pp.77-82
    • /
    • 2008
  • For heat pumps used in a cold region, it is very important to obtain appropriate heating capacity. Several studies using a variable speed compressor and an additional heater have been performed to enhance heating capacity at low ambient temperatures. However, for outdoor temperature conditions below $-15^{\circ}C$, it is still difficult to obtain enough heating capacity above the rated value. In recent studies, the application of gas injection technique into a two-stage heat pump yielded noticeable heating performance improvement at low temperature conditions. In this study, the heating performance of a two-stage gas injection heat pump with a rated capacity of 3.5 kW was measured and analyzed by varying refrigerant charge amount and EEV opening at the standard heating condition. The heating performance of the two-stage gas injection heat pump was compared with that of a two-stage non-injection heat pump. The heating capacity and COP of the two-stage gas injection heat pump were improved by 2-10% at the optimal charging condition over those of the two-stage non-injection heat pump.

Analysis of Performance Characteristics on Diesel Engine with Aftertreatment and EGR System (후처리 시스템을 장착한 디젤엔진의 EGR 밸브 작동에 따른 성능 분석)

  • Park, Cheol-Woong;Choi, Young;Lim, Gi-Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.124-129
    • /
    • 2010
  • The direct injection (DI) diesel engine has become a prime candidate for future transportation needs because of its high thermal efficiency. However, nitrogen oxides (NOx) increase in the local high temperature regions and particulate matter (PM) increases in the diffusion flame region within diesel combustion. Therefore, the demand for developing hybrid system consist of exhaust gas recirculation (EGR) and aftertreatment system as well as diesel particulate filter (DPF) or lean NOx trap (LNT) should be applied. The variation of EGR rate due to the malfunction of EGR valve can affect not only the combustion stability of engine but also the performance of aftertreatment system. In this research, 2.0 liter 4-cylinder turbocharged diesel engine was used to investigate the combustion and emission characteristics for various operating conditions with EGR. While the fuel consumption was increased with increase of EGR rate, NOx emission was improved by maximum 90% at low speed, low load operating condition. To achieve combustion stability and reliability of aftertrearment system with minimum penalty in fuel consumption and emissions, the fault diagnosis of EGR malfunction must be employed.

EVALUATION OF FRICTION WELDABILITY OF TYPE 5052 ALALLOY/LOW CARBON STEEL JOINT.

  • Kim, Kyung-Kyun;Lee, Won-Bae;Yeon, Yun-Mo;Kim, Dae-Up;Jung, Seung-Boo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.528-533
    • /
    • 2002
  • The mechanical and metallurgical properties of friction welded joints type 5052 Al alloy/A36 steel have been studied in this paper. The joint strength increased with increasing upset pressure and friction time till it reached the critical value. The joint strength was fixed at low strength compare to that of base metal in the case of increasing friction time. Microstructure of 5052 Al alloy was greatly deformed near the weld interface. The very fine and equaxied grain structure was observed at the near interface. The elongated grain was formed outside dynamic recrystallizatoin region at the peripheral part, while the A36 steel' side was not deformed. The hardness of the near interface was slightly softer than that of 5052 Al alloy base metal. The maximum softening width was about 8mm from the interface. In the present work, the friction welding condition, t$_1$=0.5sec, P$_2$=137.5MPa, showed a maximum joint strength (202MPa) when friction pressure, upset time and rotation speed were fixed at 75MPa, 5sec, 2000rev/min and these were the optimum friction welding condition of 5052Al/A36 steel joints.

  • PDF

A Lightweight Real-Time Small IR Target Detection Algorithm to Reduce Scale-Invariant Computational Overhead (스케일 불변적인 연산량 감소를 위한 경량 실시간 소형 적외선 표적 검출 알고리즘)

  • Ban, Jong-Hee;Yoo, Joonhyuk
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.4
    • /
    • pp.231-238
    • /
    • 2017
  • Detecting small infrared targets from the low-SCR images at a long distance is very hard. The previous Local Contrast Method (LCM) algorithm based on the human visual system shows a superior performance of detecting small targets by a background suppression technique through local contrast measure. However, its slow processing speed due to the heavy multi-scale processing overhead is not suitable to a variety of real-time applications. This paper presents a lightweight real-time small target detection algorithm, called by the Improved Selective Local Contrast Method (ISLCM), to reduce the scale-invariant computational overhead. The proposed ISLCM applies the improved local contrast measure to the predicted selective region so that it may have a comparable detection performance as the previous LCM while guaranteeing low scale-invariant computational load by exploiting both adaptive scale estimation and small target feature feasibility. Experimental results show that the proposed algorithm can reduce its computational overhead considerably while maintaining its detection performance compared with the previous LCM.

Different Responses of Solar Wind and Geomagnetism to Solar Activity during Quiet and Active Periods

  • Kim, Roksoon;Park, Jongyeob;Baek, Jihye;Kim, Bogyeung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.41.1-41.1
    • /
    • 2017
  • It is well known that there are good relations of coronal hole (CH) parameters such as the size, location, and magnetic field strength to the solar wind conditions and the geomagnetic storms. Especially in the minimum phase of solar cycle, CHs in mid- or low-latitude are one of major drivers for geomagnetic storms, since they form corotating interaction regions (CIRs). By adopting the method of Vrsnak et al. (2007), the Space Weather Research Center (SWRC) in Korea Astronomy and Space Science Institute (KASI) has done daily forecast of solar wind speed and Dst index from 2010. Through years of experience, we realize that the geomagnetic storms caused by CHs have different characteristics from those by CMEs. Thus, we statistically analyze the characteristics and causality of the geomagnetic storms by the CHs rather than the CMEs with dataset obtained during the solar activity was very low. For this, we examine the CH properties, solar wind parameters as well as geomagnetic storm indices. As the first result, we show the different trends of the solar wind parameters and geomagnetic indices depending on the degree of solar activity represented by CH (quiet) or sunspot number (SSN) in the active region (active) and then we evaluate our forecasts using CH information and suggest several ideas to improve forecasting capability.

  • PDF

The USN Node Location Recognition and Monitoring System Based on Low Power (저전력 기반의 USN 단말 위치 인식 및 모니터링 시스템)

  • Song, Young-Jun;Kim, Dong-Woo;Shin, Dong-Jin;Ahn, Jae-Hyeong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.11-17
    • /
    • 2008
  • This paper proposes the USN node location recognition method with low power, which is the modified centroid method. The conventional Zigbee node location recognition is used to the three RSSI values from three beacons, respectively. When a person move with node, the moving speed of USN node doesn't fast. Therefore, one among three positions used to the value that it is a previous value. This method doesn't large the error in terms of the exact position. Using hand-off method, we get about 30% power advantage than the conventional centroid method. And Our monitoring system add the function that it is possible to search for the node region by color.

Current Gain Enhancement in SiGe HBTs (SiGe HBT의 Current Gain특성 향상)

  • 송오성;이상돈;김득중
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.4
    • /
    • pp.367-370
    • /
    • 2004
  • We fabricated SiGe BiCMOS devices, which are important for ultra high speed RF IC chips, by employing $0.35\mu{m}$ CMOS process. To meet with the requirement of low noise level with linear base leakage current at low VBE region, we try to minimize polysilicon/ silicon interface traps by optimizing capping silicon thickness and EDR(emitter drive-in RTA) temperature. We employed $200\AA$and $300\AA$-thick capping silicon, and varied the EDR process condition at temperature of $900-1000^\circ{C}$, and time of 0-30 sec at a given capping silicon thickness. We investigated current gain behavior at each process condition. We suggest that optimum EDR process condition would be $975^\circ{C}$-30 sec with $300\AA$-thick capping silicon for proposed $0.35\mu{m}$-SiGe HBT devices.

  • PDF

Analysis of Wear Properties for $Ni_{3}Al$ Layer coated on Ferrous Materials by Diffusion Treatment after Combustion Synthesis at low Temperature (저온 연소합성 후 확산 열처리한 $Ni_{3}Al$ 금속간화합물 코팅층의 미끄럼 마모거동)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • Coating brittle intermetallic compounds on metal can enlarge the range of their use. It is found that intermetallic compound coating layers made by only combustion synthesis in an electric furnace have porous multi-phase structures containing several intermediate phases, even though the coating layers show good wear resistance. In this study, dense $Ni_{3}Al$ single phase layer corresponding to the initial composition of the mixed powder is coated on two different ferrous materials by the diffusing treatment after combustion synthesis. After- ward, sliding wear behaviors of the coating layer are evaluated in comparison with that of the coating layer with porous multi-phase structure made by only combustion synthesis. As a result, the wear properties of the coating layer composed of dense $Ni_{3}Al$ single phase are considerably improved at the range of low sliding speed com- pared with that of the coating layer with porous multi-phase structure, particularly in the running-in wear region. This is attributed to the fact that wear of the coating layer is progressed by shearing as a sequence of adhesion, not by occurring of pitting on the worn surface due to having dense structure without pores.

Sub-Frame Analysis-based Object Detection for Real-Time Video Surveillance

  • Jang, Bum-Suk;Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.76-85
    • /
    • 2019
  • We introduce a vision-based object detection method for real-time video surveillance system in low-end edge computing environments. Recently, the accuracy of object detection has been improved due to the performance of approaches based on deep learning algorithm such as Region Convolutional Neural Network(R-CNN) which has two stage for inferencing. On the other hand, one stage detection algorithms such as single-shot detection (SSD) and you only look once (YOLO) have been developed at the expense of some accuracy and can be used for real-time systems. However, high-performance hardware such as General-Purpose computing on Graphics Processing Unit(GPGPU) is required to still achieve excellent object detection performance and speed. To address hardware requirement that is burdensome to low-end edge computing environments, We propose sub-frame analysis method for the object detection. In specific, We divide a whole image frame into smaller ones then inference them on Convolutional Neural Network (CNN) based image detection network, which is much faster than conventional network designed forfull frame image. We reduced its computationalrequirementsignificantly without losing throughput and object detection accuracy with the proposed method.

Morphology and Ecological Milieu of Keum-gae River basin in Andong Province (안동 금계천 유역의 지형과 생태 환경)

  • KEE, Keun-Doh
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.4
    • /
    • pp.99-110
    • /
    • 2010
  • This study elucidates the interrelationship between climatic, morpological, and hydraulic milieu in the drainage basins of Keum-gae river from the viewpoint of ecogeography. The region of this basin is located at low-relief hills. Because hills are made up of granitic regolith by deep weathering, the rate of permeability is very high. And, the speed of drainage is very fast, and the deficit of water easily revealed and BOD is very high. Therefore a great deals of efforts are needed for the maintenance of stable milieu.