• Title/Summary/Keyword: low sintering temperature

Search Result 765, Processing Time 0.026 seconds

A Study on Properties of Low Temperature Sintering in the NiZn Ferrite System (NiZn 페라이트의 저온 소결 특성에 관한 연구)

  • 고상기;김병호;김경용
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.10
    • /
    • pp.1074-1082
    • /
    • 1997
  • Microstructure and permeability as a function of sintering temperature and composition were studied on the Ni$\delta$Cu0.4-$\delta$Zn0.6Fe2O4 ($\delta$=0, 0.1, 0.2, 0.3, 0.4) which was prepared by Cu2+ substitution for Ni2+ in Ni.0.4Zn0.6Fe2O4, then followed by 8 wt% CuO and 1wt% Bi2O3 as sintering aids. It was found that NiCuZn ferrite in which Cu2+ is substituted for Ni2+ is more effective in reduction of sintering temperature than Ni.0.4Zn0.6Fe2O4, containing CuO as a sintering aid. The specimen $\delta$=0.2 sintered at 90$0^{\circ}C$ for 2hr exhibited the highest initial permeability value ($\mu$o=280 at 1Mhz), but the real permeability decreased at the frequency under 10 MHz. EPMA analysis showed that Ni$\delta$Cu0.4-$\delta$Zn0.6Fe2O4 ($\delta$=0.4), sintered at 95$0^{\circ}C$ for 2hrs consisted of three phase regions of Ni.0.3Cu0.1Zn0.6Fe2O4 region, Cu and Bi liquid existed at the 3-point boundary, although the stabilization energy of Ni2+ is higher than that of Cu2+ in B site.

  • PDF

Piezoelectric and Dielectric Properties of PZW-PMN-PZT Piezoelectric Ceramic according to Sintering Aid Li2CO3 Addition (소결조제 Li2CO3 첨가에 따른 PZW-PMN-PZT 압전 세라믹의 압전 및 유전 특성)

  • Lee, Kab-Soo;Lee, Il-Ha;Yoo, Ju-Hyun;Ryu, Sung-Lim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1034-1038
    • /
    • 2007
  • In order to develop the composition ceramics capable of being sintered at low temperature with high piezoelectric properties for multilayer piezoelectric actuator application, PZW-PMN-PZT system ceramics were manufactured according to sintering aid $Li_2CO_3$ addition and their microstructural, dielectric and piezoelectric properties were investigated. The crystal structure of the specimens showed a perovskite phase and no pyrochlore or other second phase was detected. At the sintering temperature of $900\;^{\circ}C,\;0.2\;wt%Li_2CO_3$ added specimen showed a optimum values of kp = 0.562, $d_{33}\;=\;360\;pC/N$ and Qm = 1184, respectively.

Sintering of Aluminum Nitride (I) : Pressureless Sintering (질화알루미늄의 소결(I) : 상압소결)

  • Choi, Sang-Wook;Lee, Hee-Chul;Rhee, Jhun;Lee, Im-Chang
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.6
    • /
    • pp.457-464
    • /
    • 1991
  • Aluminum nitride (AlN) has excellent properties such as high thermal conductivity and electrical resistivity, whereas it has some disadvantages such as low sinterability and tendency to be hydrolyzed by moisture at room temperature. In the present work, the relative density, modulus of rupture and microhardness were examined for pressure-less-sintered AlN (synthetic and commercial) bodies which were prepared under the conditions of various sintering temperatures, holding times and additions of CaCO3 which showed the best effect on sinterability among the various sintering aids. As a result, the AlN bodies with 1.0 wt% CaCO3 (0.56wt% CaO) which were sintered at 1800$^{\circ}C$ for 20 min showed good densification. In this case, the relative densities were 95.9% and 95.2%, and microhardnesses were 10.3 GPa and 9.8 GPa for synthetic and commercial AlN respectively. And as the holding time at 1800$^{\circ}C$ was increased from 10 min to 60 min, the relative density was increased from 91.9% to 96.5%. It was considered that impurities of metals and oxygen promoted the densification of AlN at low temperature (1600$^{\circ}C$).

  • PDF

Status of Research on Selective Laser Sintering of Nanomaterials for Flexible Electronics Fabrication (나노물질의 선택적 레이저소결을 이용한 유연전기소자 구현 연구현황)

  • Ko, Seung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.533-538
    • /
    • 2011
  • A plastic-compatible low-temperature metal deposition and patterning process is essential for the fabrication of flexible electronics because they are usually built on a heat-sensitive flexible substrate, for example plastic, fabric, paper, or metal foil. There is considerable interest in solution-processible metal nanoparticle ink deposition and patterning by selective laser sintering. It provides flexible electronics fabrication without the use of conventional photolithography or vacuum deposition techniques. We summarize our recent progress on the selective laser sintering of metals and metal oxide nanoparticles on a polymer substrate to realize flexible electronics such as flexible displays and flexible solar cells. Future research directions are also discussed.

Effect of $B_{2}O_{3}$ addition on mechanical strength and microstructure of a porous $LiAlO_{2}$ electrolyte support for molten carbonate fuel cells (용융 탄산염 연료전지용 gamma $LiAlO_{2}$ 전해질 지지체의 미세구조 및 기계적 강도 변화에 대한 $B_{2}O_{3}$ 첨가의 영향)

  • Ham, Hyung-Chul;Yoon, Sung-Pil;Hong, Seong-Ah
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.54-59
    • /
    • 2007
  • A sintering aid, $B_{2}O_{3}$ have been included into a $LiAlO_{2}$ electrolyte support by a tape casting method in order to reinforce mechanical strength of the support for molten carbonate fuel cells [MCFCs). Starting idea originates from the low melting point of $B_{2}O_{3}$ ($450^{\circ}C$), which can provide the low temperature consolidation of ceramic materials. The mechanical properties and the microstructure changes of the $B_{2}O_{3}$-included electrolyte support were examined by scanning electron microscope, mercury porosimetry, X-ray powder diffraction [XRD], high temperature differential scanning calorimeter and three-point bending strength measurement. The mechanical strength was clearly improved by addition of $B_{2}O_{3}$. The increase of mechanical strength results from the neck growth of a new $LiAlO_{2}$ phase between $LiAlO_{2}$ particles by the liquid phase sintering. Average pore size and porosity of the electrolyte support reinforced by addition of the sintering aid, $B_{2}O_{3}$, was $0.24{\mu}m$ and 59%, respectively which were suitable microstructure of a matrix for an application of MCFCs.

  • PDF

Piezoelectric and Dielectric Characteristics of Low Temperature Sintering PMN-PNN-PZT Ceramics according to the addition of dopant (불순물 첨가에 따른 저온소결 PMN-PNN-PZT 세라믹스의 압전 및 유전특성)

  • Lee, Sang-Ho;Lee, Chang-Bae;Jeong, Gwang-Hyeon;Yoo, Joo-Hyun;Hong, Jae-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.33-34
    • /
    • 2005
  • In this study, in odor to develop low temperature sintering multilayer piezoelectric actuator and ultrasonic vibrator, PMN-PNN-PZT ceramics were fabricated using $Li_2CO_3$ and $Na_2CO_3$ as sintering aids and their piezoelectric and dielectric characteristics were investigated according to the addition of dopant CuO and $Fe_2O_3$, respectively. The CuO added PMN-PNN-PZT ceramics improved mechanical quality factor Qm due to the acceptor doping effect. And also, $Fe_2O_3$ reacted as softner in this composition system in addition to the increase of grain size and sinterability. Taking into consideration electromechanical coupling factor kp of 0.62, dielectric constant $\varepsilon_r$, of 1275, Piezoelectric $d_{33}$ constant of 377[pC/N] and mechanical quality factor Qm of 975, it was concluded that the ceramics with the $Fe_2O_3$, added composition sintered at 900[$^{\circ}C$] were best for the multilayer piezoelectric actuator and ultrasonic vibrator application.

  • PDF

Low temperature and dieletric properties of $Al_2O_3$/CAS glass composites by dose and particle size of $Al_2O_3$ filler and sintering time ($Al_2O_3$ 충전제의 함량, 입도 및 소결시간에 따른 $Al_2O_3$/CAS glass 복합체의 저온 소결 및 유전 특성)

  • Kim, Kwan-Soo;Kim, Myung-Soo;Yoon, Sang-Ok;Park, Jong-Guk;Kim, So-Jung;Kim, In-Tae;Kim, Shin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.176-176
    • /
    • 2009
  • Influences of dose and particle size of $Al_2O_3$ filler and sintering time on the dielectric properties of $Al_2O_3$ filler/CaO-$Al_2O_3-SiO_2$ (CAS) glass composites were investigated with a view to applying the composites to the substrate material in low temperature co-firing ceramic (LTCC) technology. The increased addition of $Al_2O_3$ filler with the particle size of 1 ${\mu}m$ monotonically decreased the density of the sintered specimen at a given temperature, while sintering of the 10 wt% $Al_2O_3$ added specimen at $925^{\circ}C$ for 2 h demonstrated 96.0 % of the relative density, dielectric constant of 6.34, and quality factor of 2,760 GHz. As for the influence of the particle size of the $Al_2O_3$ filler, there existed an optimum particle size (30 ${\mu}m$) to ensure successful densification (96.5 %) of the 10 wt% $Al_2O_3$/CAS composites at $925^{\circ}C$ for 2 h, at which condition the specimen demonstrated dielectric constant of 5.45 and quality factor of 3,740 GHz. When the influence of the sintering time of the 10 wt% $Al_2O_3$) (30 ${\mu}m$) added specimen was investigated at the sintering temperature of $925^{\circ}C$, an overly long sintering time degraded dielectric properties due to the over-sintering and the significant growth of the second phase such as anorthite, while the sintering for 4 h demonstrated 96.58 % of the relative density, dielectric constant of 5.4, and quality factor of 4,050 GHz. These results demonstrate the feasibility of the investigated material as the substrate material in LTCC technology.

  • PDF

Low Temperature Sintering and Microwave Dielectric Properties of Ca[Ti1-x(Ni1/3Nb2/3)x]O3 Ceramics (Ca[Ti1-x(Ni1/3Nb2/3)x]O3 세라믹스의 저온소결 및 마이크로파 유전특성)

  • Lee, Young-Gyu;Kim, Hyo-Tae;Nam, Joong-Hee;Kim, Jong-hee;Paik, Ungyu
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.1 s.284
    • /
    • pp.55-61
    • /
    • 2006
  • The microwave dielectric properties and low temperature sintering of $Ca[Ti_{1-x}(Ni_{1/3}Nb_{2/3})_x]O_3$ system were investigated at the sintering temperature $1,200\~1,350^{\circ}C$. The density and quality factors $(Q{\times}f)$ increased while dielectric constants slightly decreased with the decrease of Ti. The dielectric constant, quality factor, and temperature coefficient of resonance frequency $(\tau_f)$ were 64, 17,000 GHz, and $-9.1\;ppm/^{\circ}C$ respectively, when $CaTi_{1/2}(Ni_{1/3}Nb_{2/3})_{1/2}O_3$ ceramics were sintered at $1,300^{\circ}C$ for 4 h. $2Li_2O-B_2O_3$ was added to $CaTi_{1/2}(Ni_{1/3}Nb_{2/3})_{1/2}O_3$ to decrease the sintering temperature for LTCC application. The microwave dielectric properties of the samples sintered at $925^{\circ}C$ for 2 h with the addition of $6\;wt\%\;2Li_2O-B_2O_3$ were $\varepsilon_r=48.7,\;Q{\times}f=8,460\;GHz$, and $\tau_f=+5.6ppm/^{\circ}C$. Compatibility test of the composition with silver electrode shows no reaction with silver electrode, implying the feasibility as a high-K LTCC material.

Low Temperature Sintering and Tunable Dielectrics Properties of Thick Films added of Li2CO3 on BST (티탄산 바륨 스트론튬(BaxSr1-xTiO3)에 Li2CO3 첨가한 후막의 저온소결과 가변 유전특성)

  • Jeon, So-Hyun;Kim, In-Sung;Jung, Sun-Jong;Song, Jae-Sung;Yoon, Jon-Do
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.747-753
    • /
    • 2006
  • (BaSr)$TiO_3$ (BST) thick films were prepared by tape casting method, using $BaTiO_3$ and $SrTiO_3$ powder slurry and their dielectric properties were investigated. With an additive, $Li_2CO_3$, the sintering temperature was lowered by $200^{\circ}C$. Sintering density was 5.7 g/$cm^3$ and the BST thick films exhibited a maximum dielectric constant, tunability at temperatures near phase transition point. Whilst their characteristics were deteriorated above the phase transition temperature, they were unchanged below the phase transition temperature, which is presumedly due to the acceleration of $90^{\circ}$ domain formation, its contribution to the relaxation of internal stress and the increase in sintering according to the replacement of Li.

Effect of Nickel Addition on Sintering Behavior and Electrical Conductivity of BaCe0.35Zr0.5Y0.15O3-δ

  • An, Hyegsoon;Shin, Dongwook;Ji, Ho-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.91-97
    • /
    • 2019
  • The effect of different Ni-containing additives on the sintering behavior and electric conductivity of the proton conducting electrolyte $BaCe_{0.35}Zr_{0.5}Y_{0.15}O_{3-{\delta}}$ (BCZY5) was investigated. Ni-doped, NiO-added, and $BaY_2NiO_5$(BYN)-added (all 4 mol%) BCZY5 samples were prepared by the solid state synthesis method and sintered at $1400^{\circ}C$ for 6 h. Among the three samples, the onset of densification was observed at the lowest temperature for NiO-added BCZY5, which is attributed to the formation of an intermediate phase at a low melting temperature. The BYN-added sample, where no consumption of the constitutional elements of the electrolyte was expected during sintering, exhibited the highest electrical conductivity whereas the doped sample had the lowest conductivity. The electrical conductivities at $500^{\circ}C$ under humid argon atmosphere were measured to be 2.0, 4.8, and $6.2mS{\cdot}cm^{-1}$ for Ni-doped and NiO- and BYN-added samples, respectively.