• Title/Summary/Keyword: low seismic regions

Search Result 74, Processing Time 0.126 seconds

Progress in Seismic Design Concept in Moderate Seismicity Regions (중약진 지역에서의 내진설계 개념의 발전동향)

  • Jang, Seung-Pil;Kim, Jae-Gwan
    • 도로교통
    • /
    • s.76
    • /
    • pp.2-7
    • /
    • 1999
  • Seismic design in low to moderate seismic regions has to be based on the characteristics of seismic risk, ground motion and structural response in that region. The characteristics of seismic hazard in low to moderate seismic regions are reviewed briefly. The recent findings on the dynamic behavior subjected to the moderate intensity level of ground motion are summarized. The seismic design considerations in Eastern America, China, Australia, Thailand and Hong Kong will be introduced. The effort to adopt the limited ductility design in low to moderate seismicity regions will be reported. Finally research works that are required for the implementation of the limited design concept will be proposed.

Progress in Seismic Design Concept in Moderate Seismicity regions (중약진 지역에서의 내진설계 개념의 발전동향)

  • 장승필
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.217-222
    • /
    • 1999
  • Seismic design in low to moderate seismic regions has to be based on the characteristics of seismic risk ground motion and structural response in that region. The characteristics of seismic hazard in low to moderate seismic regions are reviewed briefly. The recent findings on the dynamic behavior subjected to the moderate intensity level of ground motion are summarized. The seismic design considerations in Easterm America China Australia Thailand and Hong Kong will be introduced, . The effort to adopt the limited ductility design in low to moderate seismicity regions will be reported. Finally research works that are required for the implementation of the limited design concept will be proposed.

  • PDF

Seismic Design of Structures in Low Seismicity Regions

  • Lee, Dong-Guen;Cho, So-Hoon;Ko, Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.53-63
    • /
    • 2007
  • Seismic design codes are developed mainly based on the observation of the behavior of structures in the high seismicity regions where structures may experience significant amount of inelastic deformations and major earthquakes may result in structural damages in a vast area. Therefore, seismic loads are reduced in current design codes for building structures using response modification factors which depend on the ductility capacity and overstrength of a structural system. However, structures in low seismicity regions, subjected to a minor earthquake, will behave almost elastically because of the larger overstrength of structures in low seismicity regions such as Korea. Structures in low seismicity regions may have longer periods since they are designed to smaller seismic loads and main target of design will be minor or moderate earthquakes occurring nearby. Ground accelerations recorded at stations near the epicenter may have somewhat different response spectra from those of distant station records. Therefore, it is necessary to verify if the seismic design methods based on high seismicity would he applicable to low seismicity regions. In this study, the adequacy of design spectra, period estimation and response modification factors are discussed for the seismic design in low seismicity regions. The response modification factors are verified based on the ductility and overstrength of building structures estimated from the farce-displacement relationship. For the same response modification factor, the ductility demand in low seismicity regions may be smaller than that of high seismicity regions because the overstrength of structures may be larger in low seismicity regions. The ductility demands in example structures designed to UBC97 for high, moderate and low seismicity regions were compared. Demands of plastic rotation in connections were much lower in low seismicity regions compared to those of high seismicity regions when the structures are designed with the same response modification factor. Therefore, in low seismicity regions, it would be not required to use connection details with large ductility capacity even for structures designed with a large response modification factor.

Seismic fragility performance of skewed and curved bridges in low-to-moderate seismic region

  • Chen, Luke;Chen, Suren
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.789-810
    • /
    • 2016
  • Reinforced concrete (RC) bridges with both skew and curvature are pretty common in areas with complex terrains. Existing studies have shown skewed and/or curved bridges exhibit more complicated seismic performance than straight bridges, and yet related seismic risk studies are still rare. These bridges deserve more studies in low-to-moderate seismic regions than those in seismic-prone areas. This is because for bridges with irregular and complex geometric designs, comprehensive seismic analysis is not always required and little knowledge about actual seismic risks for these bridges in low-to-moderate regions is available. To provide more insightful understanding of the seismic risks and the impact from the geometric configurations, analytical fragility studies are carried out on four typical bridge designs with different geometric configurations (i.e., straight, curved, skewed, skewed and curved) in the mountain west region of the United States. The results show the curved and skewed geometries can considerably affect the bridge seismic fragility in a complex manner, underscoring the importance of conducting detailed seismic risk assessment of skewed and curved bridges in low-to-moderate seismic regions.

Seismic Design in Low or Moderate Seismicity Regions : Suggested A, pp.oaches

  • Kim, Jae-Kwan;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.99-109
    • /
    • 1998
  • Korea is located in either low of moderate seismicity continental region. It is realized that the design codes and underlying design concept of high seismicity region may not be a, pp.opriate to low and moderate seismicity regions. The aim of this paper is to search seismic design concept that is deemed to be a, pp.opriate to low and moderate seismicity regions. To this end, the seismicity of Korea will be introduce first and important aspects of seismic design in moderate seismicity region will be discussed. The two-level code system that is going to be adopted in the future seismic regulations of Korea will be introduced.

  • PDF

Limited Ductility Seismic Design in Moderate Seismicity Regions (중진지역에서의 한정연성도 내진설계)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.75-84
    • /
    • 1998
  • Korea is located in either low or moderate seismicity continental region. It is realized that design codes and underlying design concepts of high seismicity region may not be appropriate to low or moderate seismicity region. In this paper, test results on the seismic response of structures without seismic detailing are reexamined and compared with numerical analysis results. The seismic design concept based on limited ductility is proposed as an alternative seismic design approach in moderate seismicity regions.

  • PDF

Prediction Equation of Spectral Acceleration Responses in Low-to-Moderate Seismic Regions using Domestic and Overseas Earthquake Records (국내·외 계기지진 정보를 활용한 중·약진 지역의 스펙트럴 가속도 응답 예측식)

  • Shin, Dong Hyeon;Kim, Hyung Joon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.77-86
    • /
    • 2018
  • This study develops an empirical prediction equation of spectral acceleration responses of earthquakes which can induce structural damages. Ground motion records representing hazards of low-to-moderate seismic regions were selected and organized with several influential factors affecting the response spectra. The empirical equation and estimator coefficients for acceleration response spectra were then proposed using a robust nonlinear optimization coupled with a regression analysis. For analytical verification of the prediction equation, response spectra used for low-to-moderate seismic regions were estimated and the predicted results were comparatively evaluated with measured response spectra. As a result, the predicted shapes of response spectra can simulate the graphical shapes of measured data with high accuracy and most of predicted results are distributed inside range of correlation of variation (COV) of 30% from perfectly correlated lines.

Seismic Reliability Evaluation of Electric Power Transmission Systems in Low and Moderate Seismicity Regions (중약진 지역에서의 전력송전시스템의 지진재해 신뢰성 평가)

  • 고현무;김영호;박원석
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.155-162
    • /
    • 2002
  • A technique for the seismic reliability evaluation of electric power transmission systems(EPTS) adapted to ground motion characteristics of Korea has been developed to evaluate reliability indices corresponding to the whole system and to each node within. A network model with nodes and links for EPTS has been established, and a seismic substation-fragility curve obtained from seismic fragilities of power system facilities has been derived. A point source model, the doubly truncated Gutenberg-Richter relationship, and earthquake intensity attenuation formula have been applied to simulate seismic events. Using Monte-Carlo simulation method, the seismic reliability of EPTS is evaluated and, it appeared that seismic effect on EPTS in low and moderate seismicity regions has to be considered.

  • PDF

Study of Characteristics of Smart Base Isolation System with MR Damper for Regions of Low-to-Moderate Seismicity (중약진지역에 대한 MR 감쇠기로 구성된 스마트 면진시스템의 특성연구)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.325-336
    • /
    • 2012
  • Smart base isolation systems developed for structures in high seismic regions cannot be directly applied to structures in regions of low-to-moderate seismicity, such as Korea. Therefore, the problems that occur by applying the smart base isolation system for high seismic regions to the structures in regions of low-to-moderate seismicity have been investigated in this study. To this end, a five-story building is used as an example, and an MR damper and low damping elastomeric bearings were used to compose a smart base isolation system. Artificial earthquakes are simulated for ground motions in regions of high and low-to-moderate seismicity. Based on numerical simulation results, the MR damper capacity that can provide good control is quite different among regions of high and low-to-moderate seismicity. Moreover, it is noted that the properties of a smart base isolation system for the regions of low-to-moderate seismicity should be carefully designed because the base isolation effects of the smart base isolation system for high seismic regions deteriorate when it is applied to the structures in regions of low-to-moderate seismicity.

Seismic Design Strategies of Multi-Span Continuous Bridges in Moderate Seismicity Region (중진지역에서의 다경간연속교의 내진설계 방향)

  • 김재관;김익현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.292-299
    • /
    • 2002
  • It has been realized that the design codes and underlying design concept of high seismicity region may not be appropriate to low and moderate seismicity regions. The aim of this paper is to search seismic design strategies that are appropriate to moderate seismicity regions. The characteristics of seismic hazard in moderate seismicity regions are reviewed. The seismic responses of multi-span continuous bridges subjected to the ground shaking of moderate intensity are examined. The present code on seismic design of bridges is briefly reviewed. Based on these observations, design principles and strategies appropriate to the moderate seismicity regions are proposed for the multi-span continuous bridge

  • PDF