• Title/Summary/Keyword: low rise structures

Search Result 337, Processing Time 0.024 seconds

Wind pressure coefficients on low-rise structures and codification

  • Letchford, Chris;Holmes, J.D.;Hoxey, Roger;Robertson, Adam
    • Wind and Structures
    • /
    • v.8 no.4
    • /
    • pp.283-294
    • /
    • 2005
  • This paper describes the work of the Working Group on wind pressure coefficients on low-rise structures, one of the groups set up by the International Association of Wind Engineering in 1999. General aspects of wind loading on low-rise structures are summarized. The definition, derivation and codification of loading coefficients is described. Comparisons of pressure coefficients on low rise structures are made between a selection of wind loading standards. Recommendations for consistency and for the harmonization of these coefficients are given.

The development of a field measurement instrumentation system for low-rise construction

  • Porterfield, Michelle L.;Jones, Nicholas P.
    • Wind and Structures
    • /
    • v.4 no.3
    • /
    • pp.247-260
    • /
    • 2001
  • In the last three decades several comprehensive field measurement programs have produced significant insight into the wind effects on low-rise structures. The most notable and well published of these efforts are measurements being collected at the Wind Engineering Field Laboratory (WERFL) at Texas Tech University, measurements on low-rise structures in Silsoe, England and measurements on groups of low-rise structures collected in Aylesbury, England. Complementary to these efforts, an additional full-scale field investigation program has recently collected meteorological, pressure, strain and displacement data on a low-rise structure in Southern Shores, North Carolina. To date over seventy-five hundred data sets have been collected at the Southern Shores site in a variety meteorological conditions up to and including hurricane-force winds. This paper provides details of the system, its development, and preliminary assessment of its performance. A description of the field site, the instrumented structure, and the instrumentation system is provided. In addition, an example of the data collected during three hurricanes is presented. The primary goal of this paper is to provide the reader with the necessary technical details to appropriately interpret data from this experiment, which will be presented in future publications currently under development.

Numerical prediction of the proximity effects on wind loads of low-rise buildings with cylindrical roofs

  • Deepak Sharma;Shilpa Pal;Ritu Raj
    • Wind and Structures
    • /
    • v.36 no.4
    • /
    • pp.277-292
    • /
    • 2023
  • Low-rise structures are generally immersed within the roughness layer of the atmospheric boundary layer flows and represent the largest class of the structures for which wind loads for design are being obtained from the wind standards codes of distinct nations. For low-rise buildings, wind loads are one of the decisive loads when designing a roof. For the case of cylindrical roof structures, the information related to wind pressure coefficient is limited to a single span only. In contrast, for multi-span roofs, the information is not available. In this research, the numerical simulation has been done using ANSYS CFX to determine wind pressure distribution on the roof of low-rise cylindrical structures arranged in rectangular plan with variable spacing in accordance with building width (B=0.2 m) i.e., zero, 0.5B, B, 1.5B and 2B subjected to different wind incidence angles varying from 0° to 90° having the interval of 15°. The wind pressure (P) and pressure coefficients (Cpe) are varying with respect to wind incidence angle and variable spacing. The results of present numerical investigation or wind induced pressure are presented in the form of pressure contours generated by Ansys CFD Post for isolated as well as variable spacing model of cylindrical roofs. It was noted that the effect of wind shielding was reducing on the roofs by increasing spacing between the buildings. The variation pf Coefficient of wind pressure (Cpe) for all the roofs have been presented individually in the form of graphs with respect to angle of attacks of wind (AoA) and variable spacing. The critical outcomes of the present study will be so much beneficial to structural design engineers during the analysis and designing of low-rise buildings with cylindrical roofs in an isolated as well as group formation.

A Study on the Characteristic Micro-Climate in the City using Computerized Fluid Analysis and Actual Measurement (전산유체해석과 실측을 이용한 도심내 미기후 특성에 대한 연구)

  • You, Jang-Youl;Park, Min-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.1
    • /
    • pp.35-43
    • /
    • 2023
  • Microclimate analysis was conducted through actual measurement according to land use status in urban, and CFD analysis was conducted to analyze and predict the microclimate characteristics of urban, and compared and analyzed with the actual measurement results. It was measured in high-rise areas and parks, and the temperature of the park area was 0.4 to 0.6℃ lower, and the relative humidity was 1.0 to 3.0% higher. The correlation coefficient was obtained by comparing the results of the computational fluid analysis with the results of the computational fluid analysis at the actual location located within the CFD analysis area for validation. The seasonal correlation coefficients are all higher than 0.8, so it is judged that they can be applied to microclimate analysis in urban area. The computational fluid analysis was divided into three areas (low-rise, low and high-rise, and high-rise) centered on the A2 point. On average, the low-rise area was 0.1 to 0.4% higher than the high-rise area. In the low and high-rise area and high-rise area, the pith of buildings are wide, so the airflow is smooth, so it is judged that the temperature is relatively low.

Analysis of seismic mid-column pounding between low rise buildings with unequal heights

  • Jiang, Shan;Zhai, Changhai;Zhang, Chunwei;Ning, Ning
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.395-402
    • /
    • 2018
  • Floor location of adjacent buildings may be different in terms of height elevation, and thus, the slab may hit on the columns of adjacent insufficiently separated buildings during severe ground motions. Such impacts, often referred to as mid-column pounding, can be catastrophic. Substantial pounding damage or even total collapse of structures was often observed in large amount of adjacent low rise buildings. The research on the mid-column pounding between low rise buildings is in urgency need. In present study, the responses of two adjacent low rise buildings with unequal heights and different dynamic properties have been analyzed. Parametric studies have also been conducted to assess the influence of story height difference, gap distance and input direction of ground motion on the effect of structural pounding response. Another emphasis of this study is to analyze the near-fault effect, which is important for the structures located in the near-fault area. The analysis results show that collisions exhibit significant influence on the local shear force response of the column suffering impact. Because of asymmetric configuration of systems, the structural seismic behavior is distinct by varying the incident directions of the ground motions. Results also show that near-fault earthquakes induced ground motions can cause more significant effect on the pounding responses.

The Evaluation of Effectiveness on Horizontal Transient Vibration Measurement of Low-Rise Building Using Wireless MEMS Sensor (무선 MEMS 센서를 이용한 저층건물 상시진동계측의 유효성 평가)

  • Lee, Jong-Ho;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.3
    • /
    • pp.57-64
    • /
    • 2017
  • Recently, measuring instruments for SHM of structures had being developed. In general, the wireless transmission of sensor signals, compared to its wired counterpart, is preferable due to its absence of triboelectric noise and elimination of the requirement for cumbersome cable. Preliminary studies on the continuous vibration measurement of high-rise buildings using MEMS sensors have been carried out. However, the research on the low-rise buildings with relatively small vibration levels is insufficient. Therefore, in this paper, we used the wireless MEMS sensor to compare and analyze the vibration measurements of three low-rise buildings.

Seismic Damage to RC Low-rise Building Structures Having Irregularities at the Ground Story During the 15 November 2017 Pohang, Korea, Earthquake (2017.11.15. 포항 흥해지진의 저층 RC 비틀림 비정형 건축물의 피해 및 손상 특성)

  • Hwang, Kyung Ran;Lee, Han Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.103-111
    • /
    • 2018
  • This study examines the seismic failure of RC low-rise building structures having irregularities at the ground story during the 15 November 2017 Pohang, Korea, earthquake, $M_w=5.4$, which is the second strongest since the government began monitoring them in 1978 in South Korea. Some 2,000 private houses were damaged or destroyed in this earthquake. Particularly, serious damage to the piloti story of RC low-rise residential building structures of fewer than five stories was observed within 3 km of the epicenter with brittle shear failure of columns and walls due to severe torsional behavior. Buildings below six stories constructed before 2005 did not have to comply with seismic design requirements, so confinement detailing of columns and walls also led to inadequate performance. However, some buildings constructed after 2005 were damaged at the flexible side of the piloti story due to the high torsional irregularity. Based on these results, this study focuses on the problems of the seismic torsion design approach in current building codes.

Temperature Crack Control in Slab Type구s Mass Concrete Structures (슬래브형 매스콘크리트 구조물의 온도균열제어)

  • 김동석;구본창;하재담;진형하;오승제;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.333-336
    • /
    • 1999
  • The crack of concrete induced by the heat of hydration is a serious problem, particularly in concrete structures such as mat-slab of nuclear reactor buildings, dams or large footings, foundations of high rise buildings, etc.. As a result of the temperature rise and restriction condition of foundation, the thermal stress which may induce the cracks can occur. Therefore the various techniques of the thermal stress control in massive concrete have been widely used. One of them is prediction of the thermal stress, besides low-heat cement which mitigates the temperature rise, pre-cooling which lowers the initial temperature of fresh concrete with ice flake, pipe cooling which cools the temperature of concrete with flowing water, design change which considers steel bar reinforcement, operation control and so on. The Aim of this paper is to verify the effect of low heat blended cement in reducing thermal stress in slab type's mass concrete such as container harbor structures.

  • PDF

Vibration control of low-rise buildings considering nonlinear behavior of concrete using tuned mass damper

  • Abbas Bigdeli;Md. Motiur Rahman;Dookie Kim
    • Structural Engineering and Mechanics
    • /
    • v.88 no.3
    • /
    • pp.209-220
    • /
    • 2023
  • This study investigates the effectiveness of tuned mass dampers (TMDs) in controlling vibrations in low-rise reinforced concrete buildings. It examines both linear and nonlinear behaviors of concrete structures subjected to strong ground motions from the PEER database. The research follows the ASCE 7-16 provisions to model structural nonlinearity. Additionally, the study explores the effect of varying TMD mass ratios on the performance of these systems in real-world conditions. The findings emphasize the importance of accounting for structural nonlinearity in low-rise buildings, highlighting its significant influence on the controlled response under severe seismic excitations. The study suggests including nonlinear analysis in seismic design practices and recommends customizing TMD designs to optimize vibration control. These recommendations have practical implications for enhancing the safety and effectiveness of seismic design practices for low-rise buildings.