• Title/Summary/Keyword: low reinforcement ratio

Search Result 136, Processing Time 0.021 seconds

Analysis of the Mechanical Properties of High-Tension Performance Biochar Concrete Reinforced with PVA Fibers Based on Biochar Cement Replacement Ratio

  • Kim, Sangwoo;Lee, Jihyeong;Hong, Yeji;Kim, Jinsup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.603-613
    • /
    • 2024
  • This study evaluated the mechanical properties of high-tension performance biochar concrete, focusing on the effects of varying biochar cement replacement ratios (0 %, 1 %, 2 %, 3 %, 4 %, and 5 %). Mechanical properties, including compressive strength, tensile strength, and flexural strength, were tested. The results showed a general decrease in compressive strength with increasing biochar replacement, with significant reductions at 1 % to 3 % levels. PVA fiber reinforcement improved long-term compressive strength, particularly at higher biochar levels. Tensile and flexural strength also showed initial reductions with low biochar levels but improved at higher replacement levels. PVA fibers consistently enhanced tensile and flexural strength. SEM images confirmed the integration of biochar and PVA fibers into the cement matrix, enhancing microstructural density and crack resistance.

Fatigue Behavior of Simply Supported Under Reinforcde Concrete Beams (과소철근콘크리트 단수보의 피로거동)

  • 변근주;김영진;노병철;장세창
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.41-48
    • /
    • 1991
  • In recent years, conskderable interest has developed in the fatigue strength of reinforced concrete members subjected to cyclic loading for the wide-spread adoption of ultimate strength design poecedures, the higher strength materials and the new recognition of the effect of repeated loading on structures such as bridges, concrete pavementes and offshore structures. In this study, a series of experiments is carried out to investigate the fatigue characteristics of deformed bars and underreinforced simply supported beams. The 69 reinforcing bar specimens with grade SD30 and designation of D16, D22, D25, and 24 beam specimens with D16 bars are prepared for this study. From these series of tests, it is found that I) a decrease of the bar deameter result in increased fatigue life, ii) the fatigue life of the bars embedded as main reinforcement within a concrete is more than that of bars in the air. iii) the fatigue strength at 2$\times$106 cycles of beams with steel ratio of 0.61% and 1.22% is 64.5% and 63.2% of the yielding strength, restectively. It is concluded that the low steel ratio has no significant effect on fatigue strength of underreinforced beams and the fatigue life of underreinforced concrete beams can be predicted conservatively by the fatigue life lf reinforcing bar.

  • PDF

Nonlinear behavior of deep reinforced concrete coupling beams

  • Zhao, Z.Z.;Kwan, A.K.H.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.2
    • /
    • pp.181-198
    • /
    • 2003
  • Six large scale models of conventionally reinforced concrete coupling beams with span/depth ratios ranging from 1.17 to 2.00 were tested under monotonically applied shear loads to study their nonlinear behavior using a newly developed test method that maintained equal rotations at the two ends of the coupling beam specimen and allowed for local deformations at the beam-wall joints. By conducting the tests under displacement control, the post-peak behavior and complete load-deflection curves of the coupling beams were obtained for investigation. It was found that after the appearance of flexural and shear cracks, a deep coupling beam would gradually transform itself from an ordinary beam to a truss composed of diagonal concrete struts and longitudinal and transverse steel reinforcement bars. Moreover, in a deep coupling beam, the local deformations at the beam-wall joints could contribute significantly (up to the order of 50%) to the total deflection of the coupling beam, especially at the post-peak stage. Finally, although a coupling beam failing in shear would have a relatively low ductility ratio of only 5 or even lower, a coupling beam failing in flexure could have a relatively high ductility ratio of 10 or higher.

Multi-Layered Shell Model and Seismic Limit States of a Containment Building in Nuclear Power Plant Considering Deterioration and Voids (열화 및 공극을 고려한 원전 격납건물의 다층쉘요소모델과 내진성능 한계상태)

  • Nam, Hyeonung;Hong, Kee-Jeung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.223-231
    • /
    • 2024
  • For the OPR1000, a standard power plant in Korea, an analytical model of the containment building considering voids and deterioration was built with multilayer shell elements. Voids were placed in the vulnerable parts of the analysis model, and the deterioration effects of concrete and rebar were reflected in the material model. To check the impact of voids and deterioration on the seismic performance of the containment building, iterative push-over analysis was performed on four cases of the analytical model with and without voids and deterioration. It was found that the effect of voids with a volume ratio of 0.6% on the seismic performance of the containment building was insignificant. The effect of strength reduction and cross-sectional area loss of reinforcement due to deterioration and the impact of strength increase of concrete due to long-term hardening offset each other, resulting in a slight increase in the lateral resistance of the containment building. To determine the limit state that adequately represents the seismic performance of the containment building considering voids and deterioration, the Ogaki shear strength equation, ASCE 43-05 low shear wall allowable lateral displacement ratio, and JEAC 4601 shear strain limit were compared and examined with the analytically derived failure point (ultimate point) in this study.

Fundamental Study on the Reinforcing Effect of Reinforced Clayey Soil with Nonwoven-geotextile (부직포 보강 점성토의 보강효과에 관한 기초적 연구)

  • 김유성;이재열
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.61-76
    • /
    • 1998
  • Various kinds of reinforced soil methods have been developed by many researchers or companies for their economic merits mainly. These methods have generally used sandy soils which have high permeability as embanking or backfill material. That is because, if poor embanking materials, especially like a clayey soil which has very low permeability, are used in a reinforced soil embanking, and if excessive pore water pressure is produced by external factors, the friction resistance between reinforcing members and Boils decrease, as a result possible damage or collapse of the body of a reinforced embankment. In fact, clayey Boils can also be used as a embanking materials with reinforcement which has high permeable capacity, and are expected to be able to dissipate the excess pore water pressure effectively. In this study reinforcing effects have been examined through a serries of direct shear tests in which clayey soils are reinforced with nonwoven geotextiles of which permeability is very high and tensile strength is relatively weaker than geogrids which are usually used in reinforced soil wall. Even though such nonwoven geotextile are used as reinforcement of high saturated clayey soils. the test results show the possibility that nonwoven geoteztiles could be used as a reinforcement for reinforced soil walls effectively.

  • PDF

Seismic Performance of Low-rise Piloti RC Buildings with Eccentric Core (편심코어를 가지는 저층 철근콘크리트 필로티 건물의 내진성능)

  • Kim, Sung-Yong;Kim, Kyung-Nam;Yoon, Tae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.490-498
    • /
    • 2020
  • In this study, the seismic performance of low-rise piloti buildings with eccentric core (shear wall) positions was analyzed and reviewed. A prototype was selected among constructed low-rise piloti buildings with eccentric cores designed based on KBC2005. The seismic performance of the building showed plastic behavior in the X-direction and elastic behavior in the Y-direction. The inter-story drift is larger than that of a concentric core case and has the maximum allowed drift ratio. The displacement ratio of the first story is much larger than that of upper stories, and the frame structure in the first story is vulnerable to lateral force. Therefore, low-rise piloti buildings with eccentric cores need to have less lateral displacement, as well as reinforcement of the lateral resistance capacity in seismic design and seismic retrofit.

Geotechnical Characteristics of Fly Ash Containing High Content of Unburned Carbons Reinforced with Fibers and Sand (섬유/모래로 보강된 미연소탄소탄소 고함량 플라이애쉬의 지반공학적특성)

  • Yoon, Boyeong;Lee, Changho;Choo, Hyunwook;Lee, Woojin
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.4
    • /
    • pp.35-46
    • /
    • 2017
  • Most of high carbon fly ashes (HCFA) are discarded in landfills with high costs due to low recycling rate. This study aims to explore the geotechnical behaviors of HCFA mixtures reinforced with fiber and sand. A series of compaction test, unconfined compressive strength test and modified 1D consolidation test with bender element were performed. Specimens were prepared at their optimal moisture contents based on the results of compaction tests. The results of this study demonstrate that the inclusion of fibers to the matrix of HCFA increases unconfined compressive strength (UCS), strain at UCS, and maximum shear modulus ($G_{max}$) at a given void ratio. Reinforcement with sand increases UCS of HCFA; while the strain at UCS is irrelevant with sand fractions. Sand particles may disrupt the direct contacts between HCFA particles at low sand content, resulting in a decrease in $G_{max}$. However, it can be expected that the mixtures with sand content larger than 20% are in dense state; thus, $G_{max}$ of HCFA reinforced with sand shows greater value than that of unreinforced HCFA compacted with the same energy. Regardless of types of reinforcement, the compression index ($C_c$) of both fiber and sand reinforced HCFA is mainly determined by initial void ratio.

Determinants of the Operating Profitability of the Medical Clinics (의원의 의료수익성 결정요인)

  • Jung, Seong-Wan;Hwang, In-Kyoung;Jung, Doo-Chae
    • Korea Journal of Hospital Management
    • /
    • v.11 no.1
    • /
    • pp.54-90
    • /
    • 2006
  • Medical clinics are core institutes that cover the primary medical care in Korea. Financial viability of the clinics is essential for them to conduct their roles and functions, and can be improved by increasing their operating profitability. On this ground, this study aimed at finding important factors that affect the operating profitability, and thereby at suggesting strategic alternatives that can contribute to the improvement of the profitability. Operating margin was set as a dependent variable, and such factors as general management conditions, number of visits, medical revenue, marketing activities, input resources, medical cost as independent variables. Nineteen hypotheses related to the variables were established and tested using data collected from 138 sample clinics for the year 2003. The results of the study are as follows : Firstly, such variables as percent ratio of the depreciation plus rent costs to total administration costs, type of clinical department manifested whether medical, surgical, or quasi-surgical, percent ratio of the interior facility investment to total fixed assets, and total number of outpatient visit are important factors that affect, positively or negatively, the medical profitability of the clinics. Secondly, following measures are needed to be established and implemented to improve the medical profitability. (1) Administration costs share 53.2% of the total medical costs, and depreciation plus rent costs 16.3% of the total administration costs. This implies that such measures as reinforcement of marketing activities, establishment of the cooperative utilizing system of the facility and equipment, or group practice are needed to increase cost-effectiveness. (2) Occupancy rate of the clinics with inpatient bed is as low as 45.5%, causing high fixed costs and low medical profitability. For its improvement, the resource input structure should be reorganized. Thirdly, in the future, a study that can increase sample representativeness of the study and explanation power of the variables should be performed for each type of clinical department to find more specific determinant factors and to contribute to the improvement of the medical profitability of the clinics.

  • PDF

Cyclic Loading Test for Shear Strength of Low-rise RC Walls with Grade 550 MPa Bars (550 MPa 급 철근을 적용한 낮은 철근콘크리트 벽체의 전단강도를 위한 반복하중 실험)

  • Park, Hong-Gun;Lee, Jae-Hoon;Shin, Hyun-Mock;Baek, Jang-Woon
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.601-612
    • /
    • 2013
  • In the construction of nuclear power plants using massive walls, the use of high-strength re-bars for shear design is necessary to enhance the constructability and economy. In this study, low-rise walls (aspect ratio of 1.0) with grade 550 MPa bars were tested under cyclic loading to investigate the shear capacity and deformation capacity. The test parameters were the grade of horizontal re-bars (550 MPa, 420 MPa), strength of concrete compressive strength (46 MPa, 70 MPa), horizontal/vertical reinforcement ratio, use of lateral confinement hoops, shape of cross section, and failure modes (shear failure before or after flexural yielding). The test results were compared with those of walls with grade 420 MPa bars and predicted strength by current design codes. The results showed that the shear strength of the walls with 550 MPa bars was comparable to that of the walls with 420 MPa bars though the safe margin slightly decreased. ACI 349 provides underestimated shear strength for the walls with 550 MPa bars. In case of the wall with flexural yielding, a large deformation capacity was achieved. This result indicates that the ACI 349 provisions can be safely applied to seismic design of the low-rise walls (aspect ratio of 1.0) with grade 550 MPa bars.

Structural health monitoring of seismically vulnerable RC frames under lateral cyclic loading

  • Chalioris, Constantin E.;Voutetaki, Maristella E.;Liolios, Angelos A.
    • Earthquakes and Structures
    • /
    • v.19 no.1
    • /
    • pp.29-44
    • /
    • 2020
  • The effectiveness and the sensitivity of a Wireless impedance/Admittance Monitoring System (WiAMS) for the prompt damage diagnosis of two single-storey single-span Reinforced Concrete (RC) frames under cyclic loading is experimentally investigated. The geometrical and the reinforcement characteristics of the RC structural members of the frames represent typical old RC frame structure without consideration of seismic design criteria. The columns of the frames are vulnerable to shear failure under lateral load due to their low height-to-depth ratio and insufficient transverse reinforcement. The proposed Structural Health Monitoring (SHM) system comprises of specially manufactured autonomous portable devices that acquire the in-situ voltage frequency responses of a network of twenty piezoelectric transducers mounted to the RC frames. Measurements of external and internal small-sized piezoelectric patches are utilized for damage localization and assessment at various and increased damage levels as the magnitude of the imposed lateral cycle deformations increases. A bare RC frame and a strengthened one using a pair of steel crossed tension-ties (X-bracing) have been tested in order to check the sensitivity of the developed WiAMS in different structural conditions since crack propagation, damage locations and failure mode of the examined frames vary. Indeed, the imposed loading caused brittle shear failure to the column of the bare frame and the formation of plastic hinges at the beam ends of the X-braced frame. Test results highlighted the ability of the proposed SHM to identify incipient damages due to concrete cracking and steel yielding since promising early indication of the forthcoming critical failures before any visible sign has been obtained.