• 제목/요약/키워드: low reinforcement ratio

검색결과 136건 처리시간 0.03초

Study on seismic strengthening of railway bridge pier with CFRP and concrete jackets

  • Ding, Mingbo;Chen, Xingchong;Zhang, Xiyin;Liu, Zhengnan;Lu, Jinghua
    • Earthquakes and Structures
    • /
    • 제15권3호
    • /
    • pp.275-283
    • /
    • 2018
  • Seismic strengthening is essential for existing bridge piers which are deficient to resist the earthquake. The concrete and CFRP jackets with a bottom-anchoring method are used to strengthen railway bridge piers with low reinforcement ratio. Quasi-static tests of scaled down model piers are performed to evaluate the seismic performance of the original and strengthened bridge pier. The fracture characteristics indicate that the vulnerable position of the railway bridge pier with low reinforcement ratio during earthquake is the pier-footing region and shows flexural failure mode. The force-displacement relationships show that the two strengthening techniques using CFRP and concrete jackets can both provide a significant improvement in load-carrying capacity for railway bridge piers with low reinforcement ratio. It is clear that the bottom-anchoring method by using planted steel bars can guarantee the CFRP and concrete jackets to work jointly with original concrete piers Furthermore, it can be found that the use of CFRP jacket offers advantages over concrete jacket in improving the energy dissipation capacity under lateral cyclic loading. Therefore, the seismic strengthening techniques by the use of CFRP and concrete jackets provide alternative choices for the large numbers of existing railway bridge piers with low reinforcement ratio in China.

Load-Displacement Formulations of Low-rise Unbounded RC Shear Walls with or without Openings

  • Lou, K. Y.;Cheng, F. Y.;Sheu, M. S.;Zhang, X. Z.
    • Computational Structural Engineering : An International Journal
    • /
    • 제1권2호
    • /
    • pp.117-130
    • /
    • 2001
  • Investigations of low-rice unbounded reinforced concrete shear walls with or without openings are performed with comparison of analytical and experimental results. Theoretical analysis is based on nonlinear finite element algorithm, which incorporates concrete failure criterion and nonlinear constitutive relationships. Studios focus on the effects of height-to-length ratio of shear walls, opening ratio, horizontal and vertical reinforcement radios, and diagonal reinforcement. Analytical solutions conform well with experimental results. Equations for cracking, yielding and ultimate loads with corresponding lateral displacements are derived by regression using analytical results and experimental data. Also, failure modes of low-rise unbounded shear walls are theoretically investigated. An explanation of change in failure mode is ascertained by comparing analytical results and ACI code equations. Shear-flexural failure can be obtained with additional flexural reinforcement to increase a wall's capacity. This concept leads to a design method of reducing flexural reinforcement in low-rise bounded solid shear wall's. Avoidance of shear failure as well as less reinforcement congestion leer these walls is expected.

  • PDF

사면 보강효과 확인을 위한 원심모형실험 (Centrifuge Model Tests for the Slope Reinforcement Effect)

  • 박용원;김병일;박종호;홍성수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.521-528
    • /
    • 2002
  • This paper presents the results of centrifuge model tests on the reinforced slope by pressure grouting. Tests were performed to investigate the reinforcing effect of grouting. In the tests, slopes of scale factor 1/10 were used changing the space and number of reinforcing bar. Test results are as tile follows; 1. The reinforcing effect increase rapidly with reinforcement area ratio at low value of reinforcement area ratio. 2. At high reinforcement area ratio the increase ratio of reinforcing effect decrease. 3. At same reinforcement area ratio, the reinforcing effect of double reinforcing bar was larger than the single reinforcing bar due to arching effect.

  • PDF

Effect of spiral reinforcement on flexural-shear-torsional seismic behavior of reinforced concrete circular bridge columns

  • Belarbi, Abdeldjelil;Prakash, Suriya;You, Young-Min
    • Structural Engineering and Mechanics
    • /
    • 제33권2호
    • /
    • pp.137-158
    • /
    • 2009
  • This paper investigates the behavior of reinforced concrete (RC) circular columns under combined loading including torsion. The main variables considered in this study are the ratio of torsional moment to bending moment (T/M) and the level of detailing for moderate and high seismicity (low and high transverse reinforcement/spiral ratio). This paper presents the results of tests on seven columns subjected to cyclic bending and shear, cyclic torsion, and various levels of combined cyclic bending, shear, and torsion. Columns under combined loading were tested at T/M ratios of 0.2 and 0.4. These columns were reinforced with two spiral reinforcement ratios of 0.73% and 1.32%. Similarly, the columns subjected to pure torsion were tested with two spiral reinforcement ratios of 0.73% and 1.32%. This study examined the significance of proper detailing, and spiral reinforcement ratio and its effect on the torsional resistance under combined loading. The test results demonstrate that both the flexural and torsional capacities are decreased due to the effect of combined loading. Furthermore, they show a significant change in the failure mode and deformation characteristics depending on the spiral reinforcement ratio. The increase in spiral reinforcement ratio also led to significant improvement in strength and ductility.

비선형 유한요소해석 기반 국내 고층아파트 외벽구조의 균열손상 특성 분석 (Crack Damages in Exterior Wall Structures of Korean High-Rise Apartment Buildings Based on Nonlinear Finite Element Analysis)

  • 김성현;모상영;김시현;최경규;강수민
    • 한국지진공학회논문집
    • /
    • 제28권1호
    • /
    • pp.47-57
    • /
    • 2024
  • Recently, in newly constructed apartment buildings, the exterior wall structures have been characterized by thinness, having various openings, and a significantly low reinforcement ratio. In this study, a nonlinear finite element analysis was performed to investigate the crack damage characteristics of the exterior wall structure. The limited analysis models for a 10-story exterior wall were constructed based on the prototype apartment building, and nonlinear static analysis (push-over analysis) was performed. Based on the finite element (FE) analysis model, the parametric study was conducted to investigate the effects of various design parameters on the strength and crack width of the exterior walls. As the parameters, the vertical reinforcement ratio and horizontal reinforcement ratio of the wall, as well as the uniformly distributed longitudinal reinforcement ratio and shear reinforcement ratio of the connection beam, were addressed. The analysis results showed that the strength and deformation capacity of the prototype exterior walls were limited by the failure of the connection beam prior to the flexural yielding of the walls. Thus, the increase of wall reinforcement limitedly affected the failure modes, peak strengths, and crack damages. On the other hand, when the reinforcement ratio of the connection beams was increased, the peak strength was increased due to the increase in the load-carrying capacity of the connection beams. Further, the crack damage index decreased as the reinforcement ratio of the connection beam increased. In particular, it was more effective to increase the uniformly distributed longitudinal reinforcement ratio in the connection beams to decrease the crack damage of the coupling beams, regardless of the type of the prototype exterior walls.

축방향철근의 저주파 피로 거동 (Low Cycle Fatigue Behavior of Longitudinal Reinforcement)

  • 이재훈;고성현
    • 콘크리트학회논문집
    • /
    • 제22권2호
    • /
    • pp.263-271
    • /
    • 2010
  • 이 연구는 국내에서 생산되고 있는 철근이 반복하중을 받는 경우의 파괴 특성에 대한 검증을 목적으로 한다. 이 논문은 철근콘크리트 하부구조(파일과 교각)에 배근된 축방향 철근에 대한 저주파 피로 거동을 다루었다. 전체 81개의 철근 실험체에 대하여 변형률 진폭에 따른 반복 축방향 변형률 제어 방식으로 저주파 피로 실험을 수행하였다. 실험 변수는 인장변형률과 압축변형률의 비율, 축방향 철근의 항복강도, 철근지름에 대한 철근길이의 비율, 철근의 크기와 변형률 진폭으로 선택하였다. 이 논문에서 실험 결과에 따른 저주파 피로 거동과 저주파 피로 수명을 분석하였다.

Ductility and strength assessment of HSC beams with varying of tensile reinforcement ratios

  • Mohammadhassani, Mohammad;Suhatril, Meldi;Shariati, Mahdi;Ghanbari, Farhad
    • Structural Engineering and Mechanics
    • /
    • 제48권6호
    • /
    • pp.833-848
    • /
    • 2013
  • Nine rectangular-section of High Strength Concrete(HSC) beams were designed and casted based on the American Concrete Institute (ACI) code provisons with varying of tensile reinforcement ratio as (${\rho}_{min}$, $0.2_{{\rho}b}$, $0.3_{{\rho}b}$, $0.4_{{\rho}b}$, $0.5_{{\rho}b}$, $0.75_{{\rho}b}$, $0.85_{{\rho}b}$, $_{{\rho}b}$, $1.2_{{\rho}b}$). Steel and concrete strains and deflections were measured at different points of the beam's length for every incremental load up to failure. The ductility ratios were calculated and the moment-curvature and load-deflection curves were drawn. The results showed that the ductility ratio reduced to less than 2 when the tensile reinforcement ratio increased to $0.5_{{\rho}b}$. Comparison of the theoretical ductility coefficient from CSA94, NZS95 and ACI with the experimental ones shows that the three mentioned codes exhibit conservative values for low reinforced HSC beams. For over-reinforced HSC beams, only the CSA94 provision is more valid. ACI bending provision is 10 percent conservative for assessing of ultimate bending moment in low-reinforced HSC section while its results are valid for over-reinforced HSC sections. The ACI code provision is non-conservative for the modulus of rupture and needs to be reviewed.

The effect of tensile reinforcement on the behavior of CFRP strengthened reinforced concrete beams: An experimental and analytical study

  • Javad Sabzi;M. Reza Esfahani;Togay Ozbakkaloglu;Ahmadreza Ramezani
    • Steel and Composite Structures
    • /
    • 제46권1호
    • /
    • pp.115-132
    • /
    • 2023
  • The present study experimentally and analytically investigates the effect of tensile reinforcement ratio and arrangement on the behavior of FRP strengthened reinforced concrete (RC) beams. The experimental part of the program was comprised of 8 RC beams that were tested under four-point bending. Results have shown that by keeping the total cross-section area of tensile reinforcing bars constant, in specimens with a low reinforcement ratio, increasing the number and decreasing the diameter of bars in the section lead to 21% and 29% increase in the load-carrying capacity of specimens made with normal and high compressive strength, respectively. In specimens with high reinforcement ratio, a different behavior was observed. Furthermore, the accuracy of the existing code provisions and analytical models in predicting the load-carrying capacity of the FRP strengthened beams failed by premature debonding mode were evaluated. Herein, a model is proposed which considers the tensile reinforcement ratio (as opposed to code provisions) to achieve more accurate results for calculating the load carrying capacity of FRP strengthened RC beams.

Flexural behavior of reinforced lightweight concrete beams under reversed cyclic loading

  • Chien, Li-Kai;Kuo, Yi-Hao;Huang, Chung-Ho;Chen, How-Ji;Cheng, Ping-Hu
    • Structural Engineering and Mechanics
    • /
    • 제52권3호
    • /
    • pp.559-572
    • /
    • 2014
  • This paper presents the results of an experimental investigation on the flexural behavior of doubly reinforced lightweight concrete (R.L.C.) beams tested under cyclic loading. A total of 20 beam specimens were tested. Test results are presented in terms of ductility index, the degradation of strength and stiffness, and energy dissipation. The flexural properties of R.L.C. beam were compared to those of normal concrete (R.C.) beams. Test results show that R.L.C. beam with low and medium concrete strength (20, 40MPa) performed displacement ductility similar to the R.C. beam. The ductility can be improved by enhancing the concrete strength or decreasing the tension reinforcement ratio. Using lightweight aggregate in concrete is advantageous to the dynamic stiffness of R.L.C. beam. Enhancement of concrete strength and increase of reinforcement ratio will lead to increase of the stiffness degradation of beam. The energy dissipation of R.L.C beam, similar to R.C. beam, increase with the increase of tension reinforcement ratio. The energy dissipation of unit load cycle for smaller tension reinforcement ratio is relatively less than that of beam with higher reinforcement ratio.

Evaluation of Bamboo Reinforcements in Structural Concrete Member

  • Siddika, Ayesha;Al Mamun, Md. Abdullah;Siddique, Md. Abu Bakar
    • Journal of Construction Engineering and Project Management
    • /
    • 제7권4호
    • /
    • pp.13-19
    • /
    • 2017
  • This study is based on the use and performance of bamboo reinforcements in construction of low-cost structures. This study investigated the physical and mechanical properties of bamboo reinforcements. Bamboo reinforced concrete beam specimens were tested with different reinforcement ratios and observed the load capacity, deflection and failure patterns. It was observed that, flexural strength of bamboo reinforced column is sufficient higher than plain cement concrete and comparable to steel reinforced concrete beams. Bamboo reinforced concrete columns with different reinforcement ratio also tested and observed the ultimate compressive strength and failure pattern. It found, all columns failed in a similar pattern due to crushing of concrete. According to cost analysis, bamboo reinforced beams and columns with moderate reinforcement ratio showed the best strength-cost ratio among plain cement concrete and steel reinforced concrete.