• Title/Summary/Keyword: low power network

Search Result 1,244, Processing Time 0.027 seconds

The Development of An Improved Distribution Automation System Including Low Voltage Monitoring Function (저압 배전망 감시기능을 포함하는 개선된 배전자동화시스템 개발)

  • Shin, Chang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1034-1041
    • /
    • 2007
  • This paper presents the developing results of improved distribution automation system including system configuration and subsystem design, prototype hardware and software implementation, and pilot tests on the real distribution networks of Korea Electric Power Corporation (KEPCO). An integrated system is designed to combine independent system for the distribution field works with DAS; transformer monitoring, power quality monitoring, voltage monitoring, outage monitoring, etc. The communication network is hierarchically configured as main network and branch network and well-defined integrated terminal units were developed. In addition, useful host configuration and applications were developed to integrate the services with DAS or interfacing other systems. Pilot tests were performed to verify that the system enables to properly integrate the DAS and other services of the distribution network.

  • PDF

Performance Evaluation of Time Hopping Pulse Position Modulated Ultra-Wideband System for Home Sensor Network (홈 센서 네트워크를 위한 주파수 도약 펄스 위치 변조된 초 광대역 시스템의 성능 평가)

  • Roh, Jae-Sung
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.3
    • /
    • pp.268-275
    • /
    • 2006
  • The rapid proliferation of in-home and office information applications and services is driving the need for new wireless technologies enabling wideband short range multimedia communications. Due to the growing demand for higher quality media and faster wireless connections, several IEEE standardization groups are considering very high data rate alternatives physical layer(s) for Wireless Personal Area Network (WPAN). The Ultra Wide Band (UWB) multiple access technology based on very narrow pulse transmission, is one viable candidate for these applications providing very high bit rates services, low power consumption and accurate positioning capability. In this paper we provide a methodology to evaluate the UWB system BER performance in UWB wireless fading networks with power controlled UWB devices are considered. Results can be used to analyze the performance of a given network topology and to provide useful design ideas for an UWB home sensor network.

  • PDF

State of Health Estimation for Lithium-Ion Batteries Using Long-term Recurrent Convolutional Network (LRCN을 이용한 리튬 이온 배터리의 건강 상태 추정)

  • Hong, Seon-Ri;Kang, Moses;Jeong, Hak-Geun;Baek, Jong-Bok;Kim, Jong-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.183-191
    • /
    • 2021
  • A battery management system (BMS) provides some functions for ensuring safety and reliability that includes algorithms estimating battery states. Given the changes caused by various operating conditions, the state-of-health (SOH), which represents a figure of merit of the battery's ability to store and deliver energy, becomes challenging to estimate. Machine learning methods can be applied to perform accurate SOH estimation. In this study, we propose a Long-Term Recurrent Convolutional Network (LRCN) that combines the Convolutional Neural Network (CNN) and Long Short-term Memory (LSTM) to extract aging characteristics and learn temporal mechanisms. The dataset collected by the battery aging experiments of NASA PCoE is used to train models. The input dataset used part of the charging profile. The accuracy of the proposed model is compared with the CNN and LSTM models using the k-fold cross-validation technique. The proposed model achieves a low RMSE of 2.21%, which shows higher accuracy than others in SOH estimation.

High Gain and High Efficiency Class-E Power Amplifier Using Controlling Drain Bias for WPT (드레인 조절회로를 이용한 무선전력전송용 고이득 고효율 Class-E 전력증폭기 설계)

  • Kim, Sanghwan;Seo, Chulhun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.41-45
    • /
    • 2014
  • In this paper, a high-efficiency power amplifier is implemented by using a drain bias control circuit operated at low input power for WPT(Wireless Power Transfer). Adaptive bias control circuit was added to high-efficiency class-E amplifier. It was possible to obtain the overall improvement in efficiency by adjusting the drain bias at low input power. The proposed adaptive class-E amplifier is implemented by using the input and output matching network and serial resonant circuit for improvement in efficiency. Drain bias control circuit consists of a directional coupler, power detector, and operational amplifier for adjusting the drain bias according to the input power. The measured results show that output powers of 41.83 dBm were obtained at 13.56 MHz. At this frequency, we have obtained the power added efficiency(PAE) of 85.67 %. It was confirmed increase of PAE of an average of 8 % than the fixed bias from the low input power level of 0 dBm ~ 6 dBm.

CLB-Based CPLD Low Power Technology Mapping A1gorithm for Trade-off (상관관계에 의한 CLB구조의 CPLD 저전력 기술 매핑 알고리즘)

  • Kim Jae-Jin;Lee Kwan-Houng
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.2 s.34
    • /
    • pp.49-57
    • /
    • 2005
  • In this paper. a CLB-based CPLD low power technology mapping algorithm for trade-off is proposed. To perform low power technology mapping for CPLD, a given Boolean network has to be represented to DAG. The proposed algorithm consists of three step. In the first step, TD(Transition Density) calculation have to be Performed. Total power consumption is obtained by calculating switching activity of each nodes in a DAG. In the second step, the feasible clusters are generated by considering the following conditions : the number of output. the number of input and the number of OR-terms for CLB within a CPLD. The common node cluster merging method, the node separation method, and the node duplication method are used to produce the feasible clusters. The proposed algorithm is examined by using benchmarks in SIS. In the case that the number of OR-terms is 5, the experiments results show reduction in the power consumption by 30.73$\%$ comparing with that of TEMPLA, and 17.11$\%$ comparing with that of PLAmap respectively

  • PDF

Distributed Transmit Power Control Algorithm Based on Flocking Model for Energy-Efficient Cellular Networks (에너지 효율적인 셀룰러 네트워크를 위한 플로킹 모델 기반 분산 송신전력제어 알고리즘)

  • Choi, Hyun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1873-1880
    • /
    • 2016
  • Most of the energy used to operate a cellular network is consumed by a base station (BS), and reducing the transmission power of a BS is required for energy-efficient cellular networks. In this paper, a distributed transmit power control (TPC) algorithm is proposed based on the flocking model to improve the energy efficiency of a cellular network. Just as each bird in a flock attempts to match its velocity with the average velocity of adjacent birds, in the proposed algorithm each mobile station (MS) in a cell matches its rate with the average rate of the co-channel MSs in adjacent cells by controlling the transmit power of its serving BS. Simulation results show that the proposed TPC algorithm follows the same convergence properties as the flocking model and also effectively reduces the power consumption at the BSs while maintaining a low outage probability as the inter-cell interference increases. Consequently, it significantly improves the energy efficiency of a cellular network.

Evaluation and Comparison of the Low-Frequency Oscillation Damping Methods for the Droop-Controlled Inverters in Distributed Generation Systems

  • Tao, Yong;Deng, Yan;Li, Guangdi;Chen, Guipeng;He, Xiangning
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.731-747
    • /
    • 2016
  • The droop-based control strategy is widely applied in the interfacing inverters for distributed generation. This can be a problem since low-frequency stability issues may be encountered in droop-based microgrid. The objective of this paper is to classify, evaluate and compare various low-frequency damping methods. First, low-frequency stability problems are analyzed and an equivalent model of a droop-controlled inverter is investigated to classify the damping methods into the source-type damping strategies and the impedance-type damping strategies. Moreover, the lead-lag compensation network insertion control is proposed as a beneficial part of the source-type damping strategies. Then, the advantages and disadvantages of the different types of damping methods are theoretically evaluated and experimentally tested. Furthermore, the damping methods are comprehensively compared to illustrate the application field of each method. Finally, the synthesis of different damping methods to enhance the low-frequency stability is discussed and experimental validation is presented.

Heterogeneous Interface Decision Engine and Architecture for Constructing Low Power Home Networks (저전력의 홈 네트워크 구축을 위한 이기종 인터페이스 결정 엔진 및 아키텍처)

  • Bae, Puleum;Jo, Yeong-Myeong;Moon, Eui-Kyum;Ko, Young-Bae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.313-324
    • /
    • 2015
  • In this paper, in order to support the construction of a smart home environment of low power consumption, we propose a heterogeneous interface determination engine and architecture. Technology of "smart home" is in the spotlight according to the development of IT technology nowadays. Smart homes are configured with multiple sub-networks, and each sub-network is formed by the smart devices using various communication interfaces. Thus, in the smart home environment, interlocking technology between heterogeneous interfaces is essentially required for supporting communication between different networks. Further, each communication interface is a difference in power consumption, and home smart devices are often operated in 24 hours, especially smart phones and other wireless devices are sensitive to power consumption. Therefore, in order to build a energy efficient home network, It is important to select the appropriate interface to handle traffic depending on the situation. In this paper, we propose "The Heterogeneous Interface Decision Engine and Architecture for constructing of Low Power Home Network," and analyze the performance of the proposed method and verify the validity through experiments on the test bed.

Simulation Experiment of PEMFC Using Insulation Vessel at Low Temperature Region (저온영역에서 단열용기를 이용한 연료전지 모의 실험)

  • Jo, In-Su;Kwon, Oh-Jung;Kim, Yu;Hyun, Deok-Su;Park, Chang-Kwon;Oh, Byeong-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.5
    • /
    • pp.403-409
    • /
    • 2008
  • Polymer electrolyte membrane fuel cell (PEMFC) is very interesting power source due to high power density, simple construction and operation at low temperature. But it has problems such as high cost, improvement of performance, effect of temperature and initial start at low temperature. These problems can be approached to be solved by using experiment and mathematical method which are general principles for analysis and optimization of control system for heat and hydrogen detecting management. In this paper, insulation vessel and control system for stable operation of fuel cell at low temperature were developed for experiment. The constant temperature capability and the heating time at sub-zero temperatures with insulation control system were studied by using a heating bar of 60W class. PEMFC stack which was made by 4 cells with $50\;mc^2$ active area in each cell is a thermal source. Times which take to reach constant temperature by the state of insulation vacuum were measured at variable environment temperatures. The test was performed at two conditions: heating mode and cooling mode. Constant temperature capability was better at lower environment temperature and vacuum pressure. The results of this experiment could be used as basis data about stable operation of fuel cell stack in low temperature zone.

Probability Inference Heuristic based Non-Periodic Transmission for the Wireless Sensor Network (무선센서네트워크를 위한 확률추론 휴리스틱기반 비주기적 전송)

  • Kim, Gang-Seok;Lee, Dong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1689-1695
    • /
    • 2008
  • The development of low-power wireless communication and low-cost multi-functional smart sensor has enabled the sensor network that can perceive the status information in remote distance. Sensor nodes are sending the collected data to the node in the base station through temporary communication path using the low-cost RF communication module. Sensor nodes get the energy supply from small batteries, however, they are installed in the locations that are not easy to replace batteries, in general, so it is necessary to minimize the average power consumption of the sensor nodes. It is known that the RF modules used for wireless communication are consuming 20-60% of the total power for sensor nodes. This study suggests the probability inference heuristic based non-periodic transmission to send the collected information to the base station node, when the calculated value by probability is bigger than an optional random value, adapting real-time to the variation characteristics of sensing datain order to improve the energy consumption used in the transmission of sensed data. In this transmission method suggested, transmitting is decided after evaluation of the data sensed by the probability inference heuristic algorithm and the directly sensed data, and the coefficient that is needed for its algorithm is decided through the reappearance rate of the algorithm verification data.