• Title/Summary/Keyword: low molecule protein

Search Result 53, Processing Time 0.024 seconds

Avidin Induced Silver Aggregation for SERS-based Bioassay

  • Sa, Youngjo;Chen, Lei;Jung, Young Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3681-3685
    • /
    • 2012
  • We developed a simple and effective method for the SERS-based detection of protein-small molecule complexes and label-free proteins using avidin-induced silver aggregation. Upon excitation with light of the appropriate wavelength (633 and 532 nm), the aggregated silver nanoparticles generate a strong electric field that couples with the resonance of the molecules (atto610 and cytochrome c), increasing the characteristic signals of these molecules and resulting in sensitive detection. The detection limit of biotin with the proposed method is as low as 48 ng/mL. The most important aspect of this method is the induction of silver aggregation by a protein (avidin), which makes the silver more biocompatible. This technique is very useful for the detection of protein-small molecule complexes.

Protein Changes in Soymilk and Whole Soymilk due to Enzymatic Hydrolysis (효소적 가수분해에 따른 두유와 전두유의 단백질 변화)

  • Jang, Se-Young;Sin, Kyung-A;Park, Nan-Young;Bang, Kwang-Woong;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.15 no.6
    • /
    • pp.903-908
    • /
    • 2008
  • This study investigated protein changes in soymilk and whole soymilk due to enzymatic hydrolysis. The total free amino acid contents of low molecular weight soymilk (LSM) and low molecular weight whole soymilk (LWSM) were higher than soymilk (SM) and whole soymilk (WSM). The essential amino acid content was similar in SM and LSM, but was higher in LWSM than WSM. In SDS-PAGE performed to tendency of becoming low molecules, the soy protein molecular weights were 3372 kDa for SM and WSM, but 17 kDa or less for LSM and LWSM. Also, high molecular weight protein spots were evident in 2-D electrophoresis of SM and LSM, but only low molecular weight protein spots of various sizes were evident in WSM and LWSM. This suggests that the high molecular weight protein in SM and WSM is changed to low molecular weight protein by enzymatic hydrolysis. Further investigations of the separation and qualities of these proteins are required.

Ginsenoside compound K protects human umbilical vein endothelial cells against oxidized low-density lipoprotein-induced injury via inhibition of nuclear factor-κB, p38, and JNK MAPK pathways

  • Lu, Shan;Luo, Yun;Zhou, Ping;Yang, Ke;Sun, Guibo;Sun, Xiaobo
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.95-104
    • /
    • 2019
  • Background: Oxidized low-density lipoprotein (ox-LDL) causes vascular endothelial cell inflammatory response and apoptosis and plays an important role in the development and progression of atherosclerosis. Ginsenoside compound K (CK), a metabolite produced by the hydrolysis of ginsenoside Rb1, possesses strong anti-inflammatory effects. However, whether or not CK protects ox-LDL-damaged endothelial cells and the potential mechanisms have not been elucidated. Methods: In our study, cell viability was tested using a 3-(4, 5-dimethylthiazol-2yl-)-2,5-diphenyl tetrazolium bromide (MTT) assay. Expression levels of interleukin-6, monocyte chemoattractant protein-1, tumor necrosis factor-${\alpha}$, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 were determined by enzyme-linked immunosorbent assay and Western blotting. Mitochondrial membrane potential (${\Delta}{\Psi}m$) was detected using JC-1. The cell apoptotic percentage was measured by the Annexin V/ propidium iodide (PI) assay, lactate dehydrogenase, and caspase-3 expression. Apoptosis-related proteins, nuclear factor $(NF)-{\kappa}B$, and mitogen-activated protein kinases (MAPK) signaling pathways protein expression were quantified by Western blotting. Results: Our results demonstrated that CK could ameliorate ox-LDL-induced human umbilical vein endothelial cells (HUVECs) inflammation and apoptosis, $NF-{\kappa}B$ nuclear translocation, and the phosphorylation of p38 and c-Jun N-terminal kinase (JNK). Moreover, anisomycin, an activator of p38 and JNK, significantly abolished the anti-apoptotic effects of CK. Conclusion: These results demonstrate that CK prevents ox-LDL-induced HUVECs inflammation and apoptosis through inhibiting the $NF-{\kappa}B$, p38, and JNK MAPK signaling pathways. Thus, CK is a candidate drug for atherosclerosis treatment.

Effects of Hydrostatic Pressure on Myofibrillar Protein Extracted from Bovine Semitendinosus

  • Lee, Eun-Jung;Kim, Yun-Ji;Lee, Nam-Hyouck;Yamamoto, Katsuhiro
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2004.05a
    • /
    • pp.198-201
    • /
    • 2004
  • To investigate hydrostatic pressure (HP) effect on myofibrillar protein (Mf) extracted from bovine Semitendinosus muscle, Ca- and Mg-ATPase activities to evaluate denaturation of myosin and actin, and soluble protein contents were observed. In Mf treated with 100 MPa for 5 min was not observed denaturation of myosin and actin. In Mf treated with 200 MPa for 5 min, denaturation of myosin and actin were observed but inactivation rate was low (0.0136 $min^{-1}$). Inactivation rate of myosin and actin was dramatically increased above 300 MPa treatment. However denaturation of myosin and actin was not that critical with duration time. By increasing pressure size, the amount of myosin and actin in soluble protein eluted in 20 mM potassium phosphate buffer (pH 7.0) containing 0.6 M NaCl were decreased. SDS-PAGE of soluble protein released from Mf suspension in 0.1 M NaCl buffer (pH 7.0) showed that low molecular weight proteins (15${\sim}$36 KDa) were released by HP treatment above 200 MPa. From the results, denaturation of myosin and actin, and release of light molecule proteins of Mf were observed by HP treatment over 200 MPa.

  • PDF

Effects of Plasma Lipoproteins on Expression of Vasular Cell Adhesion Molecule- in Human Microvasuclar Endothelial Cells (혈관내피세포에서 Vascular Cell Adhesion Molecule-1 발현에 대한 혈장 지단백의 효과)

  • 박성희
    • Journal of Nutrition and Health
    • /
    • v.31 no.8
    • /
    • pp.1235-1243
    • /
    • 1998
  • Although an elevated plasma level of high density lipoprotein (HDL) is known as a protective component against the development of atherosclerosis and ensuing coronary heart diseases, the related mechanisms are still not established . It has been clearly demonstrated in the early stages of atherogenesis that adhesion of monocytes and lymphocytes to the vascular endothelium is enhanced via adhesion molecules, and that monocytes and macrophages accumulate in the subendothelial space. The present study has investigated whether isolated plasma HDL plays a role in protection against atherogenesis by inhibiting the expression of vascular cell adhesioin molecule-1(VCAM-1) on the endothelial cells. Effects of plasma native low density lipoprotein (LDL) and ac ethylated LDL(AcLDL) on VCAM-1 expression were also examined by using an immunocytochemical technique. While plasma HDL did not alter the basal expression of VCAM-1 , lipopolysaccharide(LPS) induction of this adhesion modlecule was markedly inhibited at a phyaiological concentration of HDL. In contrast, 30$\mu\textrm{g}$ protein/ml AcLDL increased sifnificantly both basal VCAM-1 expression and its LPD induction , suggesting that this modified LDL enhances leukocyte adhesiion to endothelial cells. Unlike AcLDL , plasma native LDL inhibited significantly VCAM-1 expression. This indicates that LDL did not undergo oxidative modificantion while incubated with endothelial cells. These results suggest that plasam HDL may inhibit atherogenesis by reducing the expression of adhesion molecules, which is a protective mechanism independent of tis reverse cholesterol transport function . Modified LDL is a potent iducer for adhesion molecules in vascular endothelical cells and could play a role in the pathogenesis of atherosclerosis by adhering to blood cells.

  • PDF

Effects of Adipokine Retnla on the Regulation of High-Density Lipoprotein Metabolism

  • Lee, Mi-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.139-145
    • /
    • 2016
  • In this paper, we propose to evaluate the effect of Resistin-like molecule alpha (Retnla) on the expression of transporters involved in modulating concentrations of peripheral cholesterol and plasma high-density lipoprotein (HDL) cholesterol. High levels of blood cholesterol are a well-recognized risk factor for atherosclerosis and are eliminated via the process of reverse cholesterol transport (RCT). We recently showed that Retnla ameliorates hypercholesterolemia and atherosclerosis by increasing biliary cholesterol secretion, the final step of the process, in low-density lipoprotein receptor-deficient mice. However, the role of Retnla in HDL-mediated cholesterol efflux, initial step of RCT pathway, is not yet clear. To identify cholesterol transport genes regulated by Retnla, we performed an extensive microarray-based gene expression screen using livers from Retnla-overexpressing (Tg) mice and control animals. The most significant change in Retnla-Tg mice was an upregulation of ATP-binding cassette sub-family G member 4 (Abcg4) transport and was validated using quantitative RT-PCR. The validated gene was also induced by treatment of purified Retnla protein in RAW 264.7 cells incubated with acetylated low-density lipoprotein and Hepa1c1c7 cells. Taken together, these results indicates that Retnla might also accelerate initial step of RCT pathway, suggesting therapeutic value of Retnla in the treatment of hypercholesterolemia and atherosclerosis.

The Effect of Growth Condition on a Soluble Expression of Anti-EGFRvIII Single-chain Antibody in Escherichia coli NiCo21(DE3)

  • Dewi, Kartika Sari;Utami, Ratna Annisa;Hariyatun, Hariyatun;Pratiwi, Riyona Desvy;Agustiyanti, Dian Fitria;Fuad, Asrul Muhamad
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.148-156
    • /
    • 2021
  • Single-chain antibodies against epidermal growth factor receptor variant III (EGFRvIII) are potentially promising agents for developing antibody-based cancer treatment strategies. We described in our previous study the successful expression of an anti-EGFRvIII scFv antibody in Escherichia coli. However, we could also observe the formation of insoluble aggregates in the periplasmic space, limiting the production yield of the active product. In the present study, we investigated the mechanisms by which growth conditions could affect the expression of the soluble anti-EGFRvIII scFv antibody in small-scale E. coli NiCo21(DE3) cultures, attempting to maximize production. The secreted scFv molecules were purified using Ni-NTA magnetic beads and protein characterization was performed using SDS-PAGE and western blot analyses. We used the ImageJ software for protein quantification and determined the antigen-binding activity of the scFv antibody against the EGFRvIII protein. Our results showed that the highest percentage of soluble scFv expression could be achieved under culture conditions that combined low IPTG concentration (0.1 mM), low growth temperature (18℃), and large culture dish surface area. We found moderate-yield soluble scFv production in the culture medium after lactose-mediated induction, which was also beneficial for downstream protein processing. These findings were confirmed by conducting western blot analysis, indicating that the soluble, approximately 30-kDa scFv molecule was localized in the periplasm and the extracellular space. Moreover, the antigen-binding assay confirmed the scFv affinity against the EGFRvIII antigen. In conclusion, our study reveals that low-speed protein expression is preferable to obtain more soluble anti-EGFRvIII scFv protein in an E. coli expression system.

Betulinic Acid Induces Apoptosis in Humam Mucoepidermoid Carcinoma Cells Through Regulating Specificity Protein 1 and Its Downstream Molecule, Survivin

  • Lee, Jung-Eun;Jung, Ji-Youn;Yoo, Hyun-Ju;Cho, Sung-Dae
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.3
    • /
    • pp.202-206
    • /
    • 2013
  • High-grade mucoepidermoid carcinomas (MECs) have difficulty in cure and 5-year survival rate is quiet low. Therefore, we need new therapeutic agents and molecular targets. Betulinic acid (BA) is one of the materials which is easily found in the world and shows tumor-suppress effects in various tumor types. In addition, many kinds of normal tissues have a resistance to BA treatment. In this study, we investigated the anti-proliferative activity of BA and its molecular targets in MC-3 human MEC cells using western blot analysis and DAPI staining. BA inhibited cell viability and induced apoptosis in MC-3 cells. It affected Specificity protein 1 (Sp1) and its downstream molecule, survivin whereas it did not affect myeloid cell leukemia-1 (Mcl-1). Therefore, we suggest that BA can be a potential anti-cancer drug candidate regulating Sp 1 and survivin to exert apoptotic cell death.

Novel DOT1L ReceptorNatural Inhibitors Involved in Mixed Lineage Leukemia: a Virtual Screening, Molecular Docking and Dynamics Simulation Study

  • Raj, Utkarsh;Kumar, Himansu;Gupta, Saurabh;Varadwaj, Pritish Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3817-3825
    • /
    • 2015
  • Background: The human protein methyl-transferase DOT1L catalyzes the methylation of histone H3 on lysine 79 (H3K79) at homeobox genes and is also involved in a number of significant processes ranging from gene expression to DNA-damage response and cell cycle progression. Inhibition of DOT1L activity by shRNA or small-molecule inhibitors has been established to prevent proliferation of various MLL-rearranged leukemia cells in vitro, establishing DOT1L an attractive therapeutic target for mixed lineage leukemia (MLL). Most of the drugs currently in use for the MLL treatment are reported to have low efficacy, hence this study focused on various natural compounds which exhibit minimal toxic effects and high efficacy for the target receptor. Materials and Methods: Structures of human protein methyl-transferase DOT1L and natural compound databases were downloaded from various sources. Virtual screening, molecular docking, dynamics simulation and drug likeness studies were performed for those natural compounds to evaluate and analyze their anti-cancer activity. Results: The top five screened compounds possessing good binding affinity were identified as potential high affinity inhibitors against DOT1L's active site. The top ranking molecule amongst the screened ligands had a Glide g-score of -10.940 kcal/mol and Glide e-model score of -86.011 with 5 hydrogen bonds and 12 hydrophobic contacts. This ligand's behaviour also showed consistency during the simulation of protein-ligand complex for 20000 ps, which is indicative of its stability in the receptor pocket. Conclusions: The ligand obtained out of this screening study can be considered as a potential inhibitor for DOT1L and further can be treated as a lead for the drug designing pipeline.