• Title/Summary/Keyword: low molecular weight polybutadiene

Search Result 4, Processing Time 0.017 seconds

Improvement of the Filler Dispersion in Silica-Filled SBR Compounds Using Low Molecular Weight Polybutadiene Treated with Maleic Anhydride (Maleic Anhydride로 처리된 저분자량 폴리부타디엔을 이용한 실리카로 보강된 SBR 배합물에서 충전제 분산성 항상)

  • Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.41 no.1
    • /
    • pp.10-18
    • /
    • 2006
  • Influence of low molecular weight polybutadiene (liquid PB) treated with maleic anhydride on properties of a silica-filled SBR compounds was studied. Silica dispersion was improved by adding liquid PB. The liquid PB treated with maleic anhydride (liquid MAPB) was found to be more effective for the improvement of silica dispersion than the liquid PB without maleic anhydride (liquid NPB). Viscosity of the SBR compound decreased by adding the liquid PB. The crosslink density decreased with increase of the liquid PB content and the cure rate became slower with increasing the liquid PB content. Considering the experimental results, it was believed that addition of small amount of the liquid PB (less than 5 phr) was desirable to improve properties of silica-filled SBR compounds.

Effect of Rubber on Microcellular Structures from High Internal Phase Emulsion Polymerization

  • Park, Ji-Sun;Chun, Byoung-Chul;Lee, Seong-Jae
    • Macromolecular Research
    • /
    • v.11 no.2
    • /
    • pp.104-109
    • /
    • 2003
  • A microcellular, which combines a rubber with the conventional formulation of styrene/divinylbenzene/sorbitan monooleate/water system, was prepared using high internal phase emulsion (HIPE) polymerization. Although the open microcellular foam with low density from the conventional HIPE polymerization shows highly porous characteristics with fine, regular and isotropic structure, the one having much smaller cell size is desirable for various applications. In this study, a polybutadiene was introduced to reduce the cell size with comparable properties. Major interests were focused on the effects of rubber concentration and agitation speed on the cell sizes and compression properties. Scanning electron microscopy was used to observe the microcellular morphology and compression tests were conducted to evaluate the stress-strain behaviors. It was found that the cell size decreased as rubber concentration increased, reflecting a competition between the higher viscosity of continuous phase and the lower viscosity ratio of dispersed to continuous phases due to the addition of high molecular weight rubber into the oil phase of emulsion. A correlation for the average cell size depending on agitation speed was attempted and the result was quite satisfactory.

Effects of low molecular weight Diols as Chain Extender on the Mechanical Properties of HTPB Urethane Elastomers (저분자량 디올이 체인 연장제로서 HTPB 우레탄 탄성 중합체의 기계적 성질에 미치는 영향)

  • Myong Pyo Hong;Man Gyoon No;Yong Joon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.58-65
    • /
    • 1983
  • The mechanical properties (tensile strength, 100% modulus and hardness) of the urethane elastomers prepared from hydroxyl terminated polybutadiene (HTPB), several low molecular weight diols (ethylene glycol, 1, 3-propane diol, 1,4-butane diol, 1,5-pentane diol and 1,6-hexane diol) and two kinds of diisocyanates(TDI: toluene diisocyanate, IPDI: isophorone diisomechanical properties were enhanced for the increases of the concentrations of the urethane group, as predicted. In case of TDI, when the mechanical properties of the elastomers were plotted patterns were observed, which can be explained by hydrogen bondings depending on the number of the methylene carbons. But the mechanical properties of the elastomers derived from IPDI had decreasing curves against the number of methylene carbons in low molecular weight diols, without the characteristic zigzag patterns.

  • PDF

Influence of Molecular Size of Liquid BR on Properties of Silica-Filled SBR Compounds (액상 BR의 분자 크기가 실리카로 보강된 SBR 배합물의 특성에 미치는 영향)

  • Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.36 no.3
    • /
    • pp.162-168
    • /
    • 2001
  • Low molecular weight polybutadiene (liquid BR) improves the filler dispersion in a silica-filled styrene-butadiene rubber (SBR) compound. In the present work, influence of molecular weight or the liquid BR on properties of a silica-filled SBR compound was studied. Minimum and maximum torques in the rheocurve for the compound containing the liquid BR with higher molecular weight (HLBR) are lower than those for the compound containing the liquid BR with lower one (LLBR) while the delta torques are nearly the same. Mooney scorch time of the compound containing HLBR is faster than that of the compound containing LLBR. Modulus or the compound containing HLBR is lower than that of the compound containing LLBR while tensile strength of the former is higher than that of the latter. The elongation at break of the former is also longer than that of the latter. Stability for the thermal aging at $90^{\circ}C$ for 3 days is less favorable for the former than for the latter.

  • PDF