• Title/Summary/Keyword: low molecular weight chitosan

Search Result 66, Processing Time 0.024 seconds

Effect of Chitosan and N, O-Carboxymethyl Chitosan of Different Sources and Molecular Weights on Cadmium Toxicity (급원과 분자량이 다른 Chitosan 과 N, O-Carboxymethyl Chitosan이 Cadmium 중독에 미치는 영향)

  • 배계현
    • Journal of Nutrition and Health
    • /
    • v.30 no.7
    • /
    • pp.751-769
    • /
    • 1997
  • This study was performed to investigate the effect of chitosan and NOCC from different sources and of different molecular weights on cadmium toxicity. Sprague-Dawley rats were blocked into 26 groups according to body weight, and were raised for 4 weeks. Cadmium chloride was given at the level of 0 or 400 ppm in diet. Various forms of chitosan and NOCC were given at the level of 0 or 4%(w/w) of diet. Cd toxicity was alleviated by various chitosan and NOCC supplements. However, the alleviating effects were different with fiber source(crab and shrimp), type(chitosan and NOCC), and molecular weight (low, medium, and high). Molecular weight had no significant effect. Compared with shrimp-source-fiber-fed groups, crab-source-fiber-fed groups showed lower Cd concentrations in blood and kidney, lower kidney metallothionein concentration, and lower liver and kidney MT-Cd contents. Compared with NOCC -fed groups, chitosan-fed groups showed lower intestine and liver Cd concentrations, lower liver and kidney MT concentrations and MT-Cd content, and higher fecal Cd excretion. Among cadmium-exposed group, low molecular weight shrimp chitosan group showed low Cd concentrations of liver and kidney, high fecal Cd excretions, and the lowest intestine and liver MT concentrations and liver MT-Cd content. In summary, a crab source fiber was more effective than shrimp source fiber, chitosan was more effective than NOCC, and the most effective one in alleviating Cd toxicity was low molecular weight shrimp chitosan.

  • PDF

Effects of carboxymethyl chitosan fabric and low molecular weight heparin on reducing adhesion formation in the rat (Rat에서 carboxymethyl chitosan fabric과 low molecular weight heparin의 유착방지 효과)

  • Kwon, Young-sam;Jang, Kwang-ho
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.4
    • /
    • pp.703-708
    • /
    • 2003
  • This study was carried out to compare the efficacy of carboxymethyl chitosan fabric (CMCF) with that of the combination of low molecular weight heparin (LMWH) and CMCF for the prevention of postoperative adhesions in the rat. Adhesions were induced by suturing both the ileal serosa and peritoneum scraped until petechial bleeding occurred. CMCF were sutured between two surfaces, and LMWH were instilled intraperitoneally immediately before closure of the peritoneomuscular layer. The adhesions were blindly assessed 2 weeks later by using a tensiometer. The mean tensile strength(Newton) of formed adhesions was $2.59{\pm}0.85$ in control group, $2.10{\pm}0.75$ in the CMCF group and $1.53{\pm}0.44$ in the CMCF+LMWH group. The most favorable prevention against adhesion was achieved in the CMCF+LMWH group. Therefore, we could conclude that CMCF+LMWH were effective in prevention against postoperative adhesion in the rat.

A Study on Decrease in Degree of Deacetylation of Low Molecular Weight Chitosan Prepared by H2O2 and Change of Whiteness upon Time (H2O2로 분자량이 조절된 저분자화 키토산의 탈아세틸화도와 백도변화에 관한 연구)

  • Kim, Hee-Jung;Jeon, Dong-Won
    • Fashion & Textile Research Journal
    • /
    • v.5 no.5
    • /
    • pp.529-538
    • /
    • 2003
  • Chitosan should be satisfied a certain Mw range for the final application, Low molecular weight chitosan(LMWC) can be acquired by depolymerizing high molecular weight starting chitosan. Using $H_2O_2$ in depolymerizing chitosan is very effective and reproducible in controlling Mw of resulting LMWC. However, $H_2O_2$ can break glycoside linkage of chitosan and oxidize some $-NH_2$ groups in chitosan. It has been reported that decrease in DA(degree of deacetylation) of LMWC prepared by $H_2O_2$. However, any quantitative data of decrease in DA has not been reported yet. In this study, DA of initial chitosan and DA of $H_2O_2$ treated chitosan were measured and the change in DA of chitosan upon $H_2O_2$ treatment were investigated. Change in DA was very different upon $H_2O_2$ treatment condition. LMWC also showed DA change upon time passage. Pre-swelling treatment of initial chitosan and low ratio of $H_2O_2$/chitosan prevented a decrease in DA significantly. Yellowing of LMWC was detected upon time passage, however, decrease in DA was minimal (around 1%).

Antibacterial Effect of Calcium Alginate Microcapsule Containing Chitosan (키토산을 함유한 알긴산 칼슘 마이크로캅셀의 항균효과)

  • Yang, Jae-Heon;Lim, Jong-Pil
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.3
    • /
    • pp.151-158
    • /
    • 1998
  • The inhibition rate of bacteria growth per molecular weight was higher according as the molecular weight increased, the rate was the highest at the molecular weight 200,000. Microcapsule of ionized calcium was able to be produced by molecular weight 15,000, 30,000, 50,000 and 200,000 of chitosan which was dried for 48 hours after melting it in 2% of acetic acid, adding ionized calcium and controlling pH 1.2. The size of ionized calcium microcapsule was between 200 and $300\;{\mu}m$, the solvency, concentration and the content showed big difference by the molecular weight of chitosan. The inhibition rate of bacteria growth of microcapsule designated high in Gram positive, which was high in S. aureus, S. epidermidis and Bacillus subtilis, low in S. mutans, high in C. albicans in fungi, low in A. niger. The inhibition rate of bacteria growth of chitosan was comparatively high in Gram positive, low in S. mutans and it showed high numerical value in C. albicans of fungi. The rate recorded good result at molecular weight 200,000 relatively, there was no difference according to the molecular weight. The inhibition rate of bacteria growth according to the concentration of the microcapsule increased differently between $1.000{\sim}10,000\;{\mu}g/ml$, it showed antibacterial activity close to the inhibition rate of growth of chitosan rather than ionized calcium. The minimum inhibitory concentration marked the highest in the mixture of chitosan and ionized calcium for all kind of bacteria generally, there was a little difference between yeast and fungi.

  • PDF

Effect of Chitosan and N. O-Carboxymethyl Chitosan of Different Sources and Molecular Weights on Lipid Metabolism (급원과 분자량이 다른 Chitosan 과 N, O-Carboxymethyl Chitosan이 지방대사에 미치는 영향)

  • 배계원
    • Journal of Nutrition and Health
    • /
    • v.30 no.7
    • /
    • pp.770-780
    • /
    • 1997
  • This study was performed to investigate the effect of chitosan and NOCC from different sources and of different molecular weights on lipid metabolism. Sprague-Dawley rats were blocked into 26 groups according to body weight, and were raised for 4 weeks. Cadmium chloride was given at the level of 0 or 400 ppm in diet. Various chitosan and NOCC sources were given at the level of 0%(w/w) of diet. Total serum cholesterol and serum triglyceride concentrations were little affected by chitosan and NOCC supplements. However, HDL-cholesterol concentration and HDL : total cholesterol ratio were increased , and liver lipid, cholesterol , and triglyceride concentration were decreased by chitosan and NOCC supplements. The cholesterol and lipid lowering activity depends on fiber sources(crab and shrimp); type (chitosan and NOCC); and molecular weight(low , medium , and high). Among cadmium-free groups, chitosan-fed groups showed greater activity than NOCC -fed groups in lowering cholesterol and lipid levels, and greater fecal excretion of lipids and bile acids. Crab chitosans were more effective in cholesterol and lipid lowering activity than shrimp chitosans. The group fed high molecular weight crab chitosan showed the highest fecal excretion of lipids and bile acids. This indicated that high molecular weight crab chitosan was most effective in interfering with cholesterol and lipid absorption.

  • PDF

Eco-printing Using Chitosan and Natural Colorants(1) (키토산과 천연색소를 이용한 Eco-Printing(제1보))

  • Kim, Chae-Yeon;Shin, Youn-Sook
    • Textile Coloration and Finishing
    • /
    • v.23 no.2
    • /
    • pp.90-99
    • /
    • 2011
  • The aim of this study is to develope eco-printing method using natural pigments and chitosan as a natural binder. Three chitosans with different molecular weights were employed to find appropriate conditions including chitosan concentration and pigment/binder ratio. Dye uptake, color and fastnesses of the printed fabrics were evaluated to find optimum conditions within the range of experiments carried out in this study. The effectiveness of chitosan as a printing binder was examined in comparison with color, dye uptake, and fastnesses of conventional synthetic binder and guar gum. It was found that chitosans with low or medium molecular weight were appropriate. Using low molecular weight chitosan, optimum concentrations were 1.7% for charcoal, madder and chlorophyll, whereas 2.2% for ocher, yellow soil, indigo and cochineal. Regardless of molecular weight and concentration of chitosan, the color fastnesess of fabrics printed with mineral pigments were superior to those of the fabrics printed with plant and animal pigments. As pigment/chitosan ratio became higher, rubbing fastness was decreased by 1-3 grade. The colorfastness of printed fabric with chitosan binder was similar to that with synthetic binder, which was higher than that with guar gum.

Effects of Molecular Weight and Chitosan Concentration on GABA (${\gamma}$-Aminobutyric Acid) Contents of Germinated Brown Rice (키토산의 분자량과 농도에 따른 발아현미내 GABA함량증진 효과)

  • Ko, Jung-A;Kim, Kyoung-Ok;Park, Hyun-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.688-692
    • /
    • 2010
  • The aim of this study was to investigate the effects of molecular weight and concentrations of chitosan on the germination of brown rice. Brown rice was germinated at $30^{\circ}C$ for three days in various chitosan solutions. The germination rate of the brown rice increased with increasing concentrations of chitosan solution, and was higher in the chitosan solution than in water. GABA content increased with increasing germination time and chitosan solution concentration. As the molecular weight of the chitosan decreased, germination rate and GABA content increased in the brown rice. The GABA content of germinated brown rice using low molecular weight chitosan A in a 100 ppm solution was 5145.5 nmole/g. This is approximately a five times higher value than that of the water-germinated brown rice. Texture properties were enhanced in all the germinated brown rice samples in chitosan solution compared to the brown rice germinated in water. These results indicate that chitosan solution treatment can increase germination rate and GABA synthesis activity in brown rice during germination, and can also improve the texture properties of brown rice.

Pot Test and Preparation of PVA/Chitosan Blending Film Accoding to Molecular Weight of Chitosan (키토산의 분자량에 따른 PVA/Chitosan 블랜드필름의 제조와 토양분해 실험)

  • 이기창;황성규;김종완;정덕채;김판기
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.48-53
    • /
    • 1998
  • Chitin is known as biodegradable natural polymer. But, in spite of various application of chitin from waste marine sources, commercial use of chitin has been limited due to highly resistance to chemicals and the absense of proper solvents. We made various viscosity of chitosan from chitin by change of Mima's method through the deacetylation which is various condition of NaOH concentration, reaction time and temperature. Also, Polyvinyl alcohol/chitosan blend films were prepared by different solution blends containing the ratio of 5, 10, 15 and 20% chitosan and low, medium, high molecular weight of chitosan to find a more useful biodegradable polymer. Thermal and mechanical properties of PVA/chitosan blend films such as DSC, impact strength, tensile strength and morphological changes by SEM were determined. The 10-15% PVA/chitosan(low, medium) blend films were similar to PVA. Also, PVA/chitosan blend films at the laboratory soil test(Pot Test) were completely degraded in month with four kinds of soils by microorganisms.

  • PDF

Preparation and Characterization of Low Molecular Weight Water Soluble Chitosan Gene Carrier Fractioned according to Molecular Weight (저분자량 수용성 키토산이 분급화된 유전자 전달체의 제조 및 특성)

  • Jang, Min-Ja;Kim, Dong-Gon;Jeong, Young-Il;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.555-561
    • /
    • 2007
  • To obtain low molecular weight water soluble chitosan (LMWSC) with various molecular weights, chitosan oligosaccharides (COS) with lactic acid was separated by using ultrafilteration technique and LMWSC with a free amine group was prepared by the novel salts-removal method. The characterization of LMWSC removed the lactic acid and degree of deacetylation (DDA) were identified by FT-IR and $^1H-NMR$ spectra. Polydispersity index (PDI) was $1.278{\sim}1.499$, which indicates a relatively molecular weight distribution. To identify the potential as a gene carrier, we confirmed the transfection efficiency of COS fractioned according to molecular weight successfully and the salt-removed LMWSC using 293T cell. Also, LMWSC derivatives prepared for improvement transfection efficiency were evaluated using Balb/C mice.

Depolymerization of Chitosan Using H2O2 and Decrease in Molecular Weight upon Storage Time (H2O2에 의한 저분자화 키토산의 제조와 시간경과에 따른 분자량 저하)

  • Kim, Hee-Jung;Jeon, Dong-Won
    • Fashion & Textile Research Journal
    • /
    • v.5 no.5
    • /
    • pp.520-528
    • /
    • 2003
  • Chitosan was depolymerized by oxidizing agent, hydrogen peroxide ($H_2O_2$) and general properties of resulting low molecular weight chitosan(LMWC) were studied. Effect of amount of $H_2O_2$, ratio of $H_2O_2$/chitosan, and reaction temperature were investigated in preparing LMWC. In addition, the reduction of molecular weight of prepared LMWC were measured after a certain time passage. Pre-swelling treatment of starting chitosan affected uniform and mild reaction of depolymerization and increased the solubility of resulting LMWC. Prepared LMWC (Mw 100,000) showed a decrease in Mw by 25-35%. Prepared LMWC(Mw 60,000-70,000) showed a decrease in Mw by 10-15% after 7 months. Therefore, this depolymerizing process can be concluded desirable in terms of stability. In addition, yellowing of pre-swelling treated chitosan upon time passage was insignificant compared with that of untreated chitosan. Therefore, pre-swelling treatment of chitosan before depolymerization would be beneficial in terms of stability of physical state.