• Title/Summary/Keyword: low moisture

Search Result 1,600, Processing Time 0.027 seconds

A Study on the Thermal Characteristics of Low Temperature Vacuum Drying by Hot Water Temperature (가열수 온도에 의한 저온진공건조 열적 특성에 관한 연구)

  • 김경근;최순열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.588-594
    • /
    • 2001
  • The aim of this paper is to develop the low temperature vacuum dryer, with low initial investments and operating costs, easy operating method and trouble-free operation Usally operations just below atmospheric pressure, as with direct dryers, but some are built for vacuum operation with pressure as low 50 mmHg abs. The lowers the boiling point to $39^{\circ}C$ The experimental data of quantitative analysis for using practically were obtained by the constant drying rate period and reducing drying rate period according to the temperature of hot water which is the experimental parameters of present experiment. As the results, it took about 20 hours for material to reach about 18% of the final moisture content is order to store products for a long time about 450% of the early moisture content at the beginning of drying and maximum drying rate comes to about 0.30 kg/m2hr at about 350% of the moisture content.

  • PDF

Low Temperature Thin Layer Drying Model of Rough Rice (벼의 저온 박층건조모델)

  • Kim H.;Keum D. H.;Kim O. W.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.6 s.107
    • /
    • pp.495-500
    • /
    • 2004
  • This study was performed to develop thin layer drying equations for low temperature. Thin layer drying tests of short grain rough rice were conducted at three low temperature levels of 15, 25, $35^{\circ}C$ and two relative humidity levels of 30, $50\%$, respectively. The measured moisture ratios were fitted to the selected four drying models (Page, Thompson, Simplified diffusion and Lewis model) using stepwise multiple regression analysis. The overall drying rate increased as the drying air temperature was increased and as relative humidity was decreased, but the effect of temperature increase was dominant. Half response time (Moisture ratio=0.5) of drying was affected by both drying temperature and relative humidity at drying temperature of below $25^{\circ}C$, but at $35^{\circ}C$ was mainly affected by drying temperature. The results of comparing coefficients of determination and root mean square error of moisture ratio for low drying models showed that Page model was found to fit adequately to all drying test data.

An Experimental Study on the Fry Drying of Low-rank Coal with a High Moisture Content (유중 건조법에 의한 고수분 저품위탄 건조 실험)

  • Moon, Seung-Hyun;Kim, Yong-Woo;Ryu, In-Soo;Lee, Seung-Jae
    • Journal of Energy Engineering
    • /
    • v.18 no.4
    • /
    • pp.213-220
    • /
    • 2009
  • The experimental characteristics for fry drying method was investigated using low-rank coal with a high moisture content. Final temperature, mixing ratio between coal and kerosene, content of coal or kerosene, total weight of the mixture and mixing methods were varied to find out the optimum conditions by measuring moisture of coal. Evaporation of the coal moisture was not completed below $120^{\circ}C$ of final temperature. The amount of moisture was not significantly different over $130^{\circ}C$. Coal moisture was easily evaporated by increasing coal content, which showed that the moisture evaporation could be significantly enhanced by the remove of evaporated moisture from kerosene rather than by heat transfer to the coal. High total weight of the mixture resulted in lowering moisture content of coal with long evaporation time. On the other hand, low total weight was difficult to reduce the moisture below a certain level, but could reduce evaporation time. Thus, it can concluded that kerosene content should be lowered to the extent maintaining the mobility of the mixture in order to enhance evaporation. It was also observed that evacuation and mixing by using nitrogen could improve drying of coal.

Effects of Packaging Materials on the Physicochemical Characteristics of Seasoned Anchovies During Storage (포장재가 멸치조미가공품의 저장 중 이화학적 품질 특성에 미치는 영향)

  • Lee, Eui-Seok;Lee, Hyong-Ju;Bae, Jae-Seok;Kim, Yong-Kuk;Lee, Jong-Hyeouk;Hong, Soon-Taek
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.23 no.4
    • /
    • pp.461-469
    • /
    • 2013
  • This research is performed to investigate the changes in the physicochemical properties and microbial growths of seasoned anchovies with various packaging materials (PET/CPP : polyethylene terephthalate/cast polypropylene, PET/EVOH : polyethylene terephthalate/ethylene-vinyl alcohol, PET/AL/LDPE: polyethylene terephthalate/aluminum/low density polyethylene), which are stored at various temperatures (25, 35, $45^{\circ}C$) for 60 days. Generally, it is being observed that changes in physicochemical properties (i.e., moisture content, color, brown intensity, TBA value, TMA, VBN etc) of seasoned anchovies are significant when stored at higher temperatures. Particularly, the packaging materials are found to influence substantially on the physicochemical properties of seasoned anchovies. With packaging materials of high oxygen transmission rates and moisture vapor transmission rates (i.e., PET/CPP), the changes in physicochemical properties of seasoned anchovies are significant, while being low with low oxygen transmission rates and low moisture vapor transmission rates (i.e., PET/EVOH). In addition, results of microbial growths in seasoned anchovies show that significant increases in total aerobic bacteria counts (about 100-fold after 60 day of storage) are observed in samples with packaging materials of high oxygen transmission rates and moisture vapor transmission rates (i.e, PET/CPP), while with only small increases for samples of low oxygen transmission rates and low moisture vapor transmission rates (i.e., PET/EVOH). Based on the changes in the physicochemical properties and results of microbial growths, it is being concluded that PET/EVOH film is suitable for the packaging of seasoned anchovies.

A Study on the Thermal Characteristics of Aquatic Products by Low Temperature Vacuum Drying - Especially on the Sea Cucumber - (수산물의 저온진공건조 열적 특성에 관한 연구 - 해삼을 중심으로 -)

  • Choe, S.Y.;Kim, M.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.3
    • /
    • pp.46-51
    • /
    • 2011
  • Low temperature vacuum drying technique, whose drying time and quantity of exhausting energy is about 25~30% of hot air drying, is very excellent in the drying efficiency. This paper is made out in the aspects of heat engineering with the object of developing Korean drying machine which can dry once a large quantity of objects to be dried in the state of low temperature and vacuum. As the results, it took about 17 hours(3~4 days in case of hot air drying) for material to reach about 18% of the final moisture content in order to store products for a long time, from about 78~80% of the early moisture content at the beginning of drying, and maximum drying rate comes to about 0.35 kg/m2hr at about 400% of the moisture content.

Effect of Moisture in Arc Welding Electrode on Mechanical Properties of Weld Metal (아아크 용접봉 피복제 의 함수량 이 용접금속 의 기계적 성질에 미치는 영향)

  • 윤희만;김연식;박종은
    • Journal of Welding and Joining
    • /
    • v.2 no.1
    • /
    • pp.30-40
    • /
    • 1984
  • Moisture content in the coating of an electrode is known to cause defects such as porosities, fish eyes and cracks in the weld metal, however, quantitative relationship between them is not clearly understood. In this study widely consumed and the most common type of arc welding rods such as ilmenite and low hydrogen type were chosen for the investigation, and attempts were made to correlate the relationship between the mechanical properties and gas contents when welding was carried out with electrodes of various moisture contents. As the relative humidity changed from 70% to 92%, it was determined that moisture content to reach saturation was in the range of 0.6~6.8%. As the moisture content in the electrode coating was increased, the amount of gaseous components (H, O, N) in the weld metal was accordingly increased, especially diffusible hydrogen showed prominent effect, i.e. it increased proportionally to the increase of the moisture content. The mechanical properties of the weld metal was observed to become more inferior as the diffusible hydrogen was greater. It was determined for ilmenite type of electrode that the increase of hydrogen content was approximately 1.8ml per unit weight percent increase of moisture and also tensile strength resulted lowering from $45.3kg/\textrm{mm}^2$ to $42.7kg/\textrm{mm}^2$ as moisture content increased from 0.7% to 6.8%. For low hydrogen type the increase of the hyrogen was about 2.4ml per unit percent of moisture and tensile strength decreased from $63.0kg/\textrm{mm}^2$ to $53.8kg/\textrm{mm}^2$ particularly in the region of moisture content 0.1~4.2%.

  • PDF

Effect of Moisture Migration in Concrete with Hating Rate on Concrete Spalling (가열속도에 따른 콘크리트 내부의 수분이동이 폭렬발생에 미치는 영향)

  • Choe, Gyeong-Cheol;Kim, Gyu-Yong;Nam, Jeong-Soo;Kim, Hong-Seop;Yoon, Min-Ho;Hwang, Ui-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.246-247
    • /
    • 2017
  • In this study, it reviewed the effect of moisture migration in concrete with heating rate on concrete spalling. Concrete specimens with compressive strength 30MPa and 110MPa are used and its size is □100×100×h200mm. And, two kinds of heating rate are set such as IS0 834 and 1℃/min. As a result, in the concrete specimen exposed to ISO 834 standard heating condition, moisture could migrate through pore network and surface concrete pieces fall out by generating moisture clog near the surface in 110MPa concrete specimen. Meanwhile, In the case of concrete specimens exposed to 1℃/min. heating condition, it is appeared that moisture could not migrate because temperature is distributed uniformly. Therefore, surface spalling is not occurred with low heating rate. However, in the case of 110MPa concrete specimen is exploded even though it heated by low heating rate.

  • PDF

Analysis of Soil Moisture Characteristics in Nut Pine Forest about Seasons and Soil Layers (잣나무림에서의 시기별 토층별 토양수분 특성분석)

  • Hong, Eun-Mi;Choi, Jin-Yong;Yoo, Seung-Hwan;Nam, Won-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.105-114
    • /
    • 2012
  • Soil moisture plays a pivotal role in hydrological processes, especially in the forest which covers more than 64% of the national land. Soil moisture was monitored to analyze soil moisture change characteristics in terms of time and soil layers in this study. 2 Years soil moisture change data was obtained from the experimental nut pine forest and statistical analysis including auto-correlation and cross-corelation among soil moisture data from different soil layers was conducted. Using the monitored soil moisture data, a relationship between soil moisture change and precipitation was analyzed and seasonal soil moisture change characteristics were analyzed. From the result of inter-relationships among soil layers in terms of season and time lag, soil moisture change characteristics in the nut pine forest were upper soil layers were much sensitive than lowers, and seasonal variation if soil moisture for upper soil layers were bigger than lowers showing low correlation with precipitation in winter and spring due to freezing and snowfalls.

Effect of Washing Treatment of Aged Paper Materials for Better Conservation (열화된 종이자료의 보존성 개선을 위한 세척처리 특성)

  • Lee, Kwi-Bok;Seo, Yung-Bum;Park, So-Yeon;Jeon, Yang;Shin, Jong-Soon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.4 s.117
    • /
    • pp.53-60
    • /
    • 2006
  • Paper materials for long term conservation suffer slowly mechanical and chemical deterioration, the extent of which may depend upon their conservation environment. Those deterioration includes discoloring, low moisture content, acidification, and brittleness. To slow deterioration, washing treatment, deacidification, and polymer reinforcement on paper materials are usually used. One easy and simple method of fixing low moisture content and acidification was an washing method, and we used both distilled and alkali water in washing method in this study. Alkali water is electrolyzed cathode water of high pH, and has no alkali metal ions in it. Experiment showed that washing treatment with both distilled and alkali water gave improvement in raising moisture content, pH, and mechanical strength of paper materials even after severe accelerated aging test. Advantageous effect of alkali water over distilled water on preventing deterioation was also shown clearly.

Fracture Behavior for Carbon Fiber Reinforced Plastic by Immersion (흡수에 따른 탄소섬유 강화수지의 파괴거동)

  • Kim, O. G.;Nam, K. W.;Ahn, B. H.
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.4
    • /
    • pp.402-410
    • /
    • 1996
  • Recently carbon fiber reinforced plastic(CFRP) has been used structural materials in corrosive environment such as for water, chemical tank and chemical pipes. However, mechanical properties of such materials may change when CFRP are exposed to corrosive environment for long periods of time. Therefore, it is important to understand the effect of moisture absorption on mechanical properties of the CFRP. In this study, degradation behavior of immersed carbon fiber/epoxy resin composite material was investigated using acoustic emission(AE) technique. Fracture toughness test are performed on the compact tension(CT) test specimens that are pilled by two types of laminates $[0^{\circ}_2$/$90^{\circ}_2]_3s$ and $[0^{\circ}_2$/$90^{\circ}_2]_6s$During the fracture toughness test, AE test was carried out to monitor the damage of CFRP by moisture absorption. In spite of the change of moisture absorption rate, the fracture toughness of CFRP was not change. As immersion time increased, AE event count numbers decreased in low amplitude range of AE for amplitude distribution histogram. The event in low amplitude range was known to be generated by debonding of matrix-fiber interface. Therefore, decrease of AE event count numbers in low amplitude range represents that debonding of matrix-fiber interface which was probably generated by moisture absorption.

  • PDF