• Title/Summary/Keyword: low melting

Search Result 788, Processing Time 0.027 seconds

Characteristics of Sn-Ag-Cu-In Solder Alloys Incorporating Low Ag Content (소량의 Ag를 함유하는 Sn-Ag-Cu-In계 솔더 재료의 특성 분석)

  • Yu, A-Mi;Lee, Jong-Hyun;Lee, Chang-Woo;Kim, Mok-Soon;Kim, Jeong-Han
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.18-18
    • /
    • 2007
  • 지난 수년 동안 Sn-3.0Ag-0.5Cu 합금은 전자산업의 표준 무연솔더 조성으로 전자제품의 제작에 사용되어져 왔으며, 그 신뢰성도 충분히 검증되어 대표적인 무연 솔더 조성으로의 입지를 굳혀왔다. 그러나 전자제품의 mobile화에 따른 내충격 신뢰성에 대한 요구와 최근의 급격한 Ag 가격의 상승은 Ag 함량의 축소에 의한 원가절감을 요청하게 되었으며, 이에 따라 소량의 Ag를 함유하는 솔더 조성 개발에 대한 연구가 산업 현장을 중심으로 절실히 요청되고 있다. Sn-Ag-Cu의 3원계 함긍에서 Ag는 합금의 융점을 낮추고, 강도와 같은 합금의 기계적 특성을 증가시키는 한편, 모재에 대한 합금의 젖음성을 향상시키는데 필수적인 원소로 인식되고 있다. 따라서 Sn-Ag-Cu의 3원계 함금에서 Ag의 함량을 감소시키게 되면, 합금액 액상선 온도와 고상선 온도가 벌어져 pasty range(또는 mush zone)가 증가하게 되고, wettability도 감소하게 되어 솔더 합금으로서의 요구 특성을 많이 상실하게 된다. 또한 Ag 함량을 감소시키게 되면 합금의 elongation이 향상되면서 내 impact 수명이 향상되는 효과를 볼 수 있으나, 합금의 creep 특성 및 기계적인 강도는 감소하면서 열싸이클링 수명은 감소하는 경향을 나타내게 된다. 따라서 솔더 합금의 내 impact 수명과 열싸이클링 수명을 동시에 만족시키지 위해서는 Ag 함량을 최적화하기 위한 고려가 필요하며, 합금원소에 대한 연구가 요청된다고 하겠다. 한편 Ag의 함량을 3wt.% 이상으로 첨가할 경우에도 비교적 느린 응고 속도에서는 조대한 판상의 $Ag_3Sn$ 상을 형성하는 경향이 있어 외관 물량을 야기 시킬 가능성이 매우 커지는 현상도 보고되고 있다. 따라서 Ag의 첨가량을 최적화 하면서 솔더 재료로서의 특성을 계속적으로 유지하기 위해서는 제 4 원소의 함유가 필수적이라고 할 수 있다. 본 연구에서는 Sn-Ag-Cu계에 첨부하는 제 4원소로서 In을 선택하였다. 비록 In은 Ag보다 고가이기 때문에 산업적인 적용을 위한 솔더 합금 원소로는 거의 각광받지 못했으나, 본 연구의 결과로는 In은 매우 소량 첨가할 경우에도 Sn-Ag-Cu계 합금, 특히 소량의 Ag를 함유하는 Sn-Ag-Cu계 합금의 wettabilty와 기계적 특성 향상에 매우 효과적임을 알 수 있었다. 결론적으로 본 연구를 통해 구현된 Sn-Ag-Cu-In계 최적 솔더 조성의 경우 Sn-3.0Ag-0.5Cu의 표준 조성에 비하여 약 18%의 원자재 가격 절감을 도모할 수 있을 것으로 예상되는 한편. Sn-3.0Ag-0.5Cu에 유사하거나 우수한 wettability 특성을 나타내었고. Sn-1.0Ag-0.5Cu 또는 Sn-l.2Ag-0.5Cu-0.05Ni 조성보다는 월등히 우수한 wettability 특성을 나타내었다. 더구나 Sn-Ag-Cu-In계 최적 솔더 조성은 합금의 강도 저하는 최소화 시키면서 합금의 elongation은 극적으로 향상시켜 합금의 toughness 값이 매우 우수한 특성을 가짐을 알 수 있었다. 이렇게 우수한 toughness 값은 솔더 조인트의 대표적 신뢰성 요구 특성인 열싸이클링 수명과 내 impact 수명을 동시에 향상시킬 수 있을 것으로 예상된다. 요컨대 본 연구를 통해 구현된 Sn-Ag-Cu-In계 솔더 조성은 최적 솔더 조성에서 요구되는 4가지 인자, 즉, 저렴한 원재료 가격, 우수한 wettability 특성, 합금 자체의 높은 toughness, 안정하고 낮은 성장 속도의 계면 반응층 생성을 모두 만족시키는 특징을 가짐으로서 기존 무연솔더 조성의 새로운 대안으로 자리 잡을 것으로 기대된다.

  • PDF

Sintering and dielectric properties of glass/ceramics dielectrics due to the borosilicate glass (Borosilicate glass에 따른 glass/ceramics 유전체의 소결 및 유전 특성)

  • Yoon, Sang-Ok;Kim, Kwan-Soo;Jo, Tae-Hyun;Kim, Kyung-Ho;Park, Jong-Guk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.363-364
    • /
    • 2005
  • LTCC(low temperature co-fired ceramics)용 glass/ceramic 복합체를 제조하기 위해 3종류 의 glass를 선정하고 filler로 $Al_2O_3$$TiO_2$를 사용하여 glass frit에 따른 소결 및 유전 특성에 대하여 조사하였다. Glass frit은 lead-borosilicate(PBS), zinc-borosilicate(ZBS), bismuth-borosilicate(BBS) glass 조성을 사용하였고 1100~$1400^{\circ}C$에서 melting시킨 후 quenching하여 frit화하였다. $Al_2O_3$$TiO_2$ filler에 10~50 vol%로 glass frit을 각각 혼합한 후 600~$950^{\circ}C$에서 2시간 동안 소결한 결과 50 vol% glass frit 일 때 $900^{\circ}C$ 이하에서 소성이 가능하였다. 유전특성은 $900^{\circ}C$에서 $Al_2O_3$-50vol%PBS($\varepsilon_{r}$=8.8, $Q{\times}f_o$=4,900, $\tau_f$=-24), $Al_2O_3$-50vol% ZBS($\varepsilon_{r}$=5.7, $Q{\times}f_o$=17,800, $\tau_f$=-21), $Al_2O_3$-50vol%BBS($\varepsilon_{r}$=11.1, $Q{\times}f_o$= 2,080, $\tau_f$=-48), $TiO_2$-50vol%PBS($\varepsilon_{r}$=18.6, $Q{\times}f_o$=3,800, $\tau_f$=+135), $TiO_2$-50vol%ZBS($\varepsilon_{r}$=36.4, $Q{\times}f_o$= 7,500, $\tau_f$=+159), $TiO_2$-50vol%BBS($\varepsilon_{r}$=56.4, $Q{\times}f_o$=520, $\tau_f$=+119)을 나타내었다. 따라서 LTCC용 기판재료 및 마이크로파 유전체로 응용이 가능한 것으로 확인되었다.

  • PDF

Multiphonon relaxation and frequency upconversion of $Er^{3+}$ ions in heavy metal oxide glasses ($Er^{3+}$첨가 중금속 산화물 유리의 다중포논 완화와 주파수 상향 전이 현상)

  • Choi, yong-Gyu;Kim, Kyong-Hon;Heo, Jong
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.4
    • /
    • pp.221-226
    • /
    • 1998
  • Ternary heavy metal oxide glasses in the $PbO-Bi_2O_3-Ga_2O_3$ system doped with $Er_2O_3$ were prepared and their spectroscopic properties, such as radiative transition probability, calculated and measured radiative lifetimes and cross-sections of 1.5 $\mu\textrm{m}$ and 2.7 $\mu\textrm{m}$ emissions were analyzed. Enhanced quantum efficiencies of some electronic transitions were evident mainly because of the low vibrational phonon energy ($~500cm^{-1}$) inherent in the host glasses. This seems to be the main reason for obtaining the 2.7 $\mu\textrm{m}$ luminescence which is normally quenched in the conventional oxide glasses. In addition, green and red fluorescence emissions were observed through the frequency upconversion processes of the 798 nm excitation. Non-radiative transition due to the multiphonon relaxation is a dominant lifetime-shortening mechanism in the 4f-4f transitions in $Er^{3+}$ ion except for the $^4S_{3/2}{\rightarrow}^4I_{15/2}$ transition where a non-radiative transfer to band-gap excitation of the host glasses is dominant. Melting of glasses under an inert gas atmosphere and (or) addition of the typical glass-network former into glasses is necessary in order to enhance the quantum efficiency of the transition.

  • PDF

Mechanism of Crack Formation in Pulse Nd YAG Laser Spot Welding of Al Alloys (Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구)

  • Ha, Yong Su;Jo, Chang Hyeon;Gang, Jeong Yun;Kim, Jong Do;Park, Hwa Sun
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.213-213
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7NO1 spot-welded by pulse Nd: YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed: center line crack($C_{C}$), diagonal crack($C_{D}$), and U shape crack($C_{U}$). Also, HAZ crack($C_{H}$), was observed in the HAZ region, furthermore, mixing crack($C_{M}$), consisting of diagonal crack and HAZ crack was observed.White film was formed at the hot crack region in the fractured surface after it was immersed to 10%NaOH water. In the case of A5083 alloy, white films in C crack and $C_D crack region were composed of low melting phases, Fe₂Si$Al_8$ and eutectic phases, Mg₂Al₃ and Mg₂Si. Such films observed near HAZ crack were also consist of eutectic Mg₂Al₃. In the case of A7N01 alloy, eutectic phases of CuAl₂, $Mg_{32}$ (Al,Zn) ₃, MgZn₂, Al₂CuMg and Mg₂Si were observed in the whitely etched films near $C_{C}$ crack and $C_{D}$ crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Si in the case of A7N01 aooly, respectively.The $C_{D}$ and $C_{C}$ cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of $C_{M}$ crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The $C_{U}$ crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification. (Received October 7, 1999)

Studies on the Interfacial Reaction between electroplated Eutectic Pb/Sn Flip-Chip Solder Bump and UBM(Under Bump Metallurgy) (전해 도금법을 이용한 공정 납-주석 플립 칩 솔더 범프와 UBM(Under Bump Metallurgy) 계면반응에 관한 연구)

  • Jang, Se-Yeong;Baek, Gyeong-Ok
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.288-294
    • /
    • 1999
  • In the flip chip interconnection using solder bump, the Under Bump Metallurgy (UBM) is required to perform multiple functions in its conversion of an aluminum bond pad to a solderable surface. In this study, various UBM systems such as $Al 1\mu\textrm{m} / Ti 0.2\mu\textrm{m} / Cu 5\mu\textrm{m}, Al 1\mu\textrm{m} / Ti 0.2\mu\textrm{m} / Cu 1\mu\textrm{m}, al 1\mu\textrm{m}/Ni 0.2\mu\textrm{m} / Cu 1\mu\textrm{m} and Al 1\mu\textrm{m}/Pd 0.2\mu\textrm{m} / Cu 1\mu\textrm{m}$ for flip chip interconnection using the low melting point eutectic 63Sn-37Pb solder were investigated and compared to their metallurgical properties. $100\mu\textrm{m}$ size bumps were prepared for using an electroplating process. The effects of the number of reflows and aging time on the growth of intermetallic compounds(IMC) were investigated. $Cu_6Sn_5$ and $Cu_3Sn$ IMC were abserved after aging treatment in the UBM system with thick coper $(Al 1\mu\textrm{m}/Ti 0.2\mu\textrm{m}/Cu 5\mu\textrm{m})$. However only the $Cu_6Sn_5$ was detected in the UBM system with $1\mu\textrm{m}$ thick copper even after 2 reflow and 7 day aging at $150^{\circ}C$. Complete Cu consumption by Cu-Sn IMC growth gives rise to a direct contact between solder inner layer such as Ti, Ni and Pd, and hence to possibly cause reactions between two of them. In this study, however, only for the Pd case, IMC of PdSn. was observed by Cu consumption. UBM interfacial reactions with s이der affected the adhesion strength ot s이der balls after s이der reflow and annealing treatment.

  • PDF

Effect of Thermal History on the Physical Properties of Nylon66 (열 이력이 나일론66의 물성에 미치는 영향)

  • Lee, Bom Yi;Jo, Chan Woo;Shim, Chang Up;Lim, Su Jung;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.90-95
    • /
    • 2014
  • Nylon66 extrudates as a function of the extrusion number were prepared by a twin screw extruder. Chemical structures, thermal properties, melt index, crystal structures, mechanical properties such as the tensile strength, elongation at break and impact strength, and rheological property were measured by FT-IR, $^1H$-NMR, melt indexer, DSC, TGA, XRD, universal tensile tester, Izod impact tester, and rheometer. FT-IR and $^1H$-NMR characterizations indicated that the number of extrusions did not affect the chemical structure. The decrease in the molecular weight was checked by the melt index of extrudates. There were no effects of the thermal history on the melting and degradation temperature. The tensile and impact strength and modulus were found to be similar, regardless of the number of extrusions, but the elongation decreased significantly. The complex viscosity of extrudates at low frequencies decreased with the extrusion number. No structural changes after extrusion were confirmed from the fact that there was no change in the slope and shape of G'-G" plot.

Study of Polymer Rapid Setting Cement Concrete Using Electric Arc Furnace Oxidizing Slag Aggregate (전기로(電氣爐) 산화(酸化)슬래그 잔골재를 이용한 폴리머 속경성(速硬性) 시멘트 콘크리트 기초물성(基礎物性) 연구(硏究))

  • Jung, Won-Kyong;Gill, Yong-Soo;Kang, Seung-Hee
    • Resources Recycling
    • /
    • v.21 no.1
    • /
    • pp.30-40
    • /
    • 2012
  • Electric arc furnace slag is made in ironworks during steel refining, it is been increasing chemical and physical resistibility using ageing method of unstable state of melting steel slag for using concrete's fine aggregates. Which is been changing stable molecular structure of aggregates, it restrains moving of ion and molecule. In Korea, KS F 4571 has been prepared for using the electric arc furnace oxidizing slag to concrete aggregates(EFS). In this study, Electric arc furnace oxidizing slag is used in the PRCC(Polymer Rapid setting Cement Concrete) which is applied a bridge pavement of rehabilitation, largely. The results showed that the increment of compressive strength development by 10- 20%. The flexural strength of EFS-Con increased greatly as the electric arc furnace oxidizing slag changed. The compressive strength and flexural strength developed enough for opening the overlayed EFS-Con to the traffic after 4 hours of EFS-Con placement. The permeability of EFS-Con was evaluated as negligible due to its very low charge passed. Thus, EFS-Con could be used at repairing or overlaying the concrete at fast-track job sites.

A Study on the Radiometric Correction of Sentinel-1 HV Data for Arctic Sea Ice Detection (북극해 해빙 탐지를 위한 Sentinel-1 HV자료의 방사보정 연구)

  • Kim, Yunjee;Kim, Duk-jin;Kwon, Ui-Jin;Kim, Hyun-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1273-1282
    • /
    • 2018
  • Recently, active research on the Arctic Ocean has been conducted due to the influence of global warming and new Arctic ship route. Although previous studies already calculated quantitative extent of sea ice using passive microwave radiometers, melting at the edge of sea ice and surface roughness were hardly considered due to low spatial resolution. Since Sentienl-1A/B data in Extended Wide (EW) mode are being distributed as free of charge and bulk data for Arctic sea can be generated during a short period, the entire Arctic sea ice data can be covered in high spatial resolution by mosaicking bulk data. However, Sentinel-1A/B data in EW mode, especially in HV polarization, needs significant radiometric correction for further classification. Thus, in this study, we developed algorithms that can correct thermal noise and scalloping effects, and confirmed that Arctic sea ice and open-water were well classified using the corrected dual-polarization SAR data.

Mechanical Characteristics and Microstructures of Hypereutectic Al-17Si-5Fe Extruded Alloys Prepared by Rapid Solidification Process (급속응고법으로 제조한 과공정 Al-17Si-5Fe 합금 압출재의 미세조직 및 기계적 특성)

  • KIM, Tae-Jun;LEE, Se-dong;BECK, Ah-Ruem;KIM, Duck-Hyun;LIM, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.39 no.2
    • /
    • pp.26-31
    • /
    • 2019
  • In this study, the mechanical characteristics and microstructure of hypereutectic Al-17Si-5Fe extruded alloys prepared by a rapid solidification process (RSP) were investigated. The hypereutectic Al alloy was fabricated by means of RSP and permanent casting. For RSP, the Al alloy melted at $920^{\circ}C$, cooling the specimens at a rate of $10^6^{\circ}C/s$ when the RSP was used, thus allowing the refining of primary Si particles more than when using permanent casting, at a rate of about 91%. We tested an extrusion RSP billet and a permanent-cast billet. Before the hot-extrusion process, heating to $450^{\circ}C$ took place for one hour. The samples were then hotextruded with a condition of extrusion ratio of 27 and a ram speed of 0.5 mm/s. Microstructural analyses of the extruded RSP method and the permanent casting method were carried out with OM and SEM-EDS mapping. The mechanical properties in both cases were evaluated by Vickers micro-hardness, wear resistance and tensile tests. It was found that when hypereutectic Al-17Si-5Fe alloys were fabricated by a rapid solidification method, it becomes possible to refine Si and intermetallic compounds. During the preparation of the hypereutectic Al-17Si-5Fe alloy by the rapid solidification method, the pressure of the melting crucible was low, and at faster drum speeds, smaller grain alloy flakes could be produced. Hot extrusion of the hypereutectic Al-17Si-5Fe alloy during the rapid solidification method required higher pressure levels than hot extrusion of the permanent mold-casted alloy. However, it was possible to produce an extruded material with a better surface than that of the hot extruded material processed by permanent mold casting.

Effect of V2O3 and CaO Concentrations on the Viscosity of 5-Component Petcoke Slag (V2O3와 CaO의 농도에 따른 5-성분계 석유코크스 슬래그의 점도 변화)

  • Yang, Yoonjung;Oh, Myongsook S.
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.688-696
    • /
    • 2020
  • Petroleum coke (petcoke) is widely used, next to coal, as a gasification feedstock. In gasification processes, the viscosity of the ash and the formation of crystalline phases must be understood to ensure the continuous removal of slag. This study investigates the effect of CaO and V2O3 on petcoke slag viscosity. The viscosity of the molten slag was measured in the temperature range of 1100~1600 ℃ while varying the concentration of each component. The crystalline phases formed in a cooled slag were examined. The most slag samples tested in this study exhibited crystalline slag behavior. The increased CaO concentration resulted in a lower viscosity and a lower Tcv. The viscosity behavior changed from the glassy to crystalline slag and also showed a higher Tcv as the concentration of V2O3 increases. Most slag samples showed different crystalline phases from top to bottom. Anorthites and Ca-V phases were observed in the top and middle section, while the bottom section mainly showed V2O3 and anorthite. The vanadium in the ash forms Ca-V and V-Fe phases and also remains in molten slag. A low melting Ca-V phase can contribute to lowering the viscosity.