• Title/Summary/Keyword: low mass-damping

Search Result 63, Processing Time 0.017 seconds

Retrofitting of vulnerable RC structures by base isolation technique

  • Islam, A.B.M. Saiful;Jumaat, Mohd Zamin;Ahmmad, Rasel;Darain, Kh. Mahfuz ud
    • Earthquakes and Structures
    • /
    • v.9 no.3
    • /
    • pp.603-623
    • /
    • 2015
  • The scale and nature of the recent earthquakes in the world and the related earthquake disaster index coerce the concerned community to become anxious about it. Therefore, it is crucial that seismic lateral load effect will be appropriately considered in structural design. Application of seismic isolation system stands as a consistent alternative against this hazard. The objective of the study is to evaluate the structural and economic feasibility of reinforced concrete (RC) buildings with base isolation located in medium risk seismic region. Linear and nonlinear dynamic analyses as well as linear static analysis under site-specific bi-directional seismic excitation have been carried out for both fixed based (FB) and base isolated (BI) buildings in the present study. The superstructure and base of buildings are modeled in a 3D finite element model by consistent mass approach having six degrees of freedom at each node. The floor slabs are simulated as rigid diaphragms. Lead rubber bearing (LRB) and High damping rubber bearing (HDRB) are used as isolation device. Change of structural behaviors and savings in construction costing are evaluated. The study shows that for low to medium rise buildings, isolators can reduce muscular amount of base shears, base moments and floor accelerations for building at soft to medium stiff soil. Allowable higher horizontal displacement induces structural flexibility. Though incorporating isolator increases the outlay, overall structural cost may be reduced. The application of base isolation system confirms a potential to be used as a viable solution in economic building design.

Characterization of the wind-induced response of a 356 m high guyed mast based on field measurements

  • Zhe Wang;Muguang Liu;Lei Qiao;Hongyan Luo;Chunsheng Zhang;Zhuangning Xie
    • Wind and Structures
    • /
    • v.38 no.3
    • /
    • pp.215-229
    • /
    • 2024
  • Guyed mast structures exhibit characteristics such as high flexibility, low mass, small damping ratio, and large aspect ratio, leading to a complex wind-induced vibration response mechanism. This study analyzed the time- and frequency-domain characteristics of the wind-induced response of a guyed mast structure using measured acceleration response data obtained from the Shenzhen Meteorological Gradient Tower (SZMGT). Firstly, 734 sets of 1-hour acceleration samples measured from 0:00 October 1, 2021, to 0:00 November 1, 2021, were selected to study the vibration shapes of the mast and the characteristics of the generalized extreme value (GEV) distribution. Secondly, six sets of typical samples with different vibration intensities were further selected to explore the Gaussian property and modal parameter characteristics of the mast. Finally, the modal parameters of the SZMGT are identified and the identification results are verified by finite element analysis. The findings revealed that the guyed mast vibration shape exhibits remarkable diversity, which increases nonlinearly along the height in most cases and reaches a maximum at the top of the tower. Moreover, the GEV distribution characteristics of the 734 sets of samples are closer to the Weibull distribution. The probability distribution of the structural wind vibration response under strong wind is in good agreement with the Gaussian distribution. The structural response of the mast under wind loading exhibits multiple modes. As the structural response escalates, the first three orders of modal energy in the tower display a gradual increase in proportion.

Evaluating the Wind-induced Response of Tall Building Changed by Arrangements of the Buildings (건물배치변화에 따른 고층건축물의 풍응답 평가)

  • Cho, Sang Kyu;Ha, Young Cheol;Kim, Jong Rak;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.305-314
    • /
    • 2004
  • Many residential buildings and mixed-use (i.e., residential and commercial) buildings that are currently under construction in the country mainly consist of building clusters rather than single structures. Recent trends show single buildings that actually consist of two houses. The lower part of the building consists of a single dwelling space. However, the upper part of the building is split into two dwellings, considering the aspects of commercialism and appearance, such as ventilation and lighting. These tall and complex buildings not only have low mass and damping. They also depend on wind loads for their structural stability and serviceability, due to the interaction between the building groups and the wind. In architectural design, however, the interaction effects among neighboring houses within a building group have yet to be identified. In addition, it is difficult to predict these interaction effects. In this regard, this thesis aims to model patterns of architecture, which consist of two houses that are existing or under construction. Current structures are investigated by comparing their wind-reduced response interaction effects, based on the measured distance between two buildings, and the acceleration response through the wind tunnel test. The results of this study are expected to provide basic data for wind-induced response interaction effects of building groups. Furthermore, the outcomes are also intended to be used as data for more rational and economical structure design.